Drilling of Microholes on Silicon Wafer With Ultrasonic Workpiece Holder

Author(s):  
Chuan-Yu Tsui ◽  
Chia-Che Wu ◽  
Ming-Chyuan Lu ◽  
Chi-Feng Huang

This paper presents a study to improve machining quality concerning the method of drilling ceramics and other hard and brittle materials such as silicon wafers. Instead of making the drill vibrate by the ultrasonic actuator, a new design of PZT-driving ultrasonic workpiece wafer holder is proposed to ensure the high quality, high efficiency and longer life for micro tools in drilling the silicon wafer. In this paper, ultrasonic workpiece holders are first designed by FEA and fabricated experimentally. Then, the ultrasonic holders is used for a series of experiments under different vibration conditions to examine the behavior of drilled hole accuracy, and edge chipping on the drilled hold surface. Also, the behavior of tool during ultrasonic vibration of holder is examined experimentally. The result demonstrates the ultrasonic workpiece holder could enhance the quality and efficiency for drilling silicon wafers.

2011 ◽  
Vol 325 ◽  
pp. 436-441 ◽  
Author(s):  
Shigeomi Koshimizu

Glass disks are used as substrates for the recording media in magnetic disk devices. To mass produce glass disks, a technology is required for machining glass (a material that is difficult to machine) with both high precision and high efficiency. Consequently, this study adopted a method that processes the inner- and outer-diameters simultaneously using a double core tool. In addition, the thrust force in coring process was also reduced using an ultrasonic spindle to apply ultrasonic vibration to the feed direction of the rotating tool. This resulted in high quality machining with less chipping. Furthermore, this study conducted experiments to compare the three methods of stabilizing the stack of glass substrates. As a result, it was found that the method using ultraviolet curable resin was able to limit the chipping to a smaller size.


Author(s):  
Z. J. Pei ◽  
Alan Strasbaugh

In order to ensure high quality chips with high yield, the base material, semiconductor wafers (over 90% are silicon), must have superior quality. It is critically important to develop new manufacturing processes that allow silicon wafer manufacturers to produce high quality wafers at a reasonably low cost. A newly patented technology—fine grinding of etched silicon wafers—has great potential to manufacture very flat silicon wafers more cost-effectively. This paper presents an investigation of grinding marks in fine grinding. The investigation covers (1) nature of grinding marks, (2) factors that have effects on grinding marks, and (3) approaches to reduce grinding marks. Varying chuck speed during grinding operation is shown to be a very effective approach to reduce grinding marks. Conclusions from this study have direct impacts to the silicon wafer industry.


2014 ◽  
Vol 1027 ◽  
pp. 131-135
Author(s):  
Ying Niu ◽  
Feng Jiao ◽  
Jie Li ◽  
Jia Fei Zhang

Longitudinal-bending complex vibration can be realized by opening chute on the amplitude amplifier pole. Different longitudinal and bending amplitudes can be obtained under different angles and the number of the chutes. Based on the theory of two-dimensional ultrasonic cutting, the effects of the two dimensional amplitude on the cutting characteristics were analyzed experimentally in the paper. Research results show that the amplitudes of longitudinal and bending vibration have a great effect on cutting force and machining quality in two-dimensional ultrasonic vibration cutting of hard and brittle materials. When keeping constant longitudinal amplitude and increasing bending amplitude in a certain extent, the cutting force could be reduced and the machining quality of workpiece could be improved effectively. The research provides relevant basis for designing two-dimensional longitudinal bending vibration cutting system.


2019 ◽  
Vol 12 (4) ◽  
pp. 313-325
Author(s):  
Xiaokun Li ◽  
Yuankai Ren ◽  
Zhiyuan Wei ◽  
Yong Liu

Background: The fabrication of microstructures with high machining quality is always difficult when it is concerned with non-conductive hard and brittle materials such as glass and engineering ceramics. It is reported in related papers and patents that Electrochemical Discharge Machining (ECDM) process is a good choice for machining non-conductive, hard and brittle materials. However, the machining performance of ECDM process, especially in the aspect of geometric accuracy and surface quality, needs to be greatly improved. Objective: The purpose of this study was to improve the machining quality of conventional ECDM process by introducing ultrasonic vibration to ECDM process, develop an Ultrasonic Vibration Assisted Micro Electrochemical Discharge Machining (UAECDM) tool, and investigate the improvements of the machining performance by means of comparative experiments. Methods: Firstly, the machining principle of UAECDM was investigated, and the effects of ultrasonic vibration are discussed with the analysis of the micro process. Secondly, the hardware system, which consists of a machine tool body, XY and Z axes, an ultrasonic spindle system and motion control system, was established; and the software system was developed based on the analysis of the overall workflow of the machining process. Finally, comparative experiments, including ECDM drilling, UAECDM drilling, ECDM milling and UAECDM milling, were carried out to reveal the improvements of the machining quality. Results: In the UAECDM group, a micro-hole with the inlet diameter of 133.2µm as well as the 3 × 3 array of micro holes was fabricated on the glass workpiece with 300µm thickness, and a microgroove with the width of 119.2µm was successfully milled on the glass workpiece. It is shown in both microscopic photographs and optical measurements that the microstructures fabricated by UAECDM have better machining quality compared with similar microstructures fabricated by ECDM. Conclusion: Based on comparative experiments and discussions of the results, it has been proved that the machine tool can meet the requirement of the ultrasonic vibration-assisted micro electrochemical discharge machining and can improve the geometric accuracy and surface quality significantly.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Feng Jiao ◽  
Bo Zhao

Lapping is a key processing step for precision parts, which directly affects machining quality, precision, and efficiency. Due to some drawbacks of free-abrasive lapping such as deep scratches on the lapped surface, lower lapping efficiency for lower lapping speed, severe waste of abrasive, high-processing cost, and so on, conventional fixed-abrasive lapping (CFL) technology was proposed and developed recently. Meanwhile, considering the unique advantages of the ultrasonic-assisted machining during the processing of those hard and brittle materials and the effect of ultrasonic vibration on the self-sharpening characteristic of abrasive pellet, a novel ultrasonic-assisted fixed-abrasive lapping (UAFL) technology is put forward and corresponding lapping device for engineering ceramics cylindrical part is developed in this paper. Meanwhile, UAFL mechanism and characteristics were studied theoretically and experimentally. Research results show that superimposed ultrasonic vibration changes the lapping movement characteristics and material removal mechanism to a certain extent, helping to heighten material removal rate, smoothen the waveform of tangential force, reduce the average tangential force, and improve surface machining quality. UAFL can be regarded as a high efficiency and precision processing technology for engineering ceramics cylindrical part.


2014 ◽  
Vol 1027 ◽  
pp. 331-335
Author(s):  
Xiao Bo Wang ◽  
Chong Yang Zhao

According to the unique advantage of the ultrasonic vibration processing in brittle materials, a new processing method, combining ultrasonic vibration and high-speed milling, was presented in this paper, to investigate an adaptation of high-quality and efficient processing in carbon fiber composites. Based on vibration theory, the special ultrasonic vibration milling device suitable for high speed machining centers was designed. Taking into account of a range of issues existing in contact electrical transport under high-speed processing, the contactless induction power transmission system was developed, and the impacts of load, frequency, air gap size as well as the existence of compensation on the transmission performance was discussed. The study shows that carbon fiber composites processed under ultrasonic vibration with high speed, high quality and high efficiency are adapted. Keywords: ultrasonic vibration milling; carbon fiber composites; contactless induction; tool wear


2007 ◽  
Vol 329 ◽  
pp. 361-366
Author(s):  
J.H. Liu ◽  
Zhi Jian Pei ◽  
Graham R. Fisher

The majority of integrated circuits are built on silicon wafers. To manufacture high-quality silicon wafers, a series of processes are needed. After a wire sawing process slices silicon ingots into wafers, grinding processes can be used to flatten the sliced wafers. This paper reports three experimental investigations on wafer grinding. The first investigation was to study the effectiveness of soft-pad grinding in removing the wire-sawing induced waviness. The second was to explore the capability of grinding in achieving super flatness. The third was to study the effects of grinding parameters on wafer flatness.


2013 ◽  
Vol 797 ◽  
pp. 685-690 ◽  
Author(s):  
Ren Ke Kang ◽  
Yan Fen Zeng ◽  
Shang Gao ◽  
Zhi Gang Dong ◽  
Dong Ming Guo

Wire saw process is widely used in the machining of hard and brittle materials with low surface damage and high efficiency. Cutting of silicon wafers in integrated circuit (IC), semiconductor and photovoltaic solar industries is also generally using wire saw process. However, the surface layer damage induced by wire saw process will seriously decrease the wafer quality and increase the process time and production costs of the post grinding and polishing. The surface layer qualities of the silicon wafers sawed by the different wire saw processes was investigated in this paper. The characteristics of surface roughness, surface topography and subsurface damage of silicon wafers sliced by the fixed abrasive and the loose abrasive wire sawing respectively were compared and the corresponding reasons were analyzed.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 544
Author(s):  
Tianchen Zhao ◽  
Qianfa Deng ◽  
Cheng Zhang ◽  
Kaiping Feng ◽  
Zhaozhong Zhou ◽  
...  

Silicon wafer with high surface quality is widely used as substrate materials in the fields of micromachines and microelectronics, so a high-efficiency and high-quality polishing method is urgently needed to meet its large demand. In this paper, a dielectrophoresis polishing (DEPP) method was proposed, which applied a non-uniform electric field to the polishing area to slow down the throw-out effect of centrifugal force, thereby achieving high-efficiency and high-quality polishing of silicon wafers. The principle of DEPP was described. Orthogonal experiments on important polishing process parameters were carried out. Contrast polishing experiments of silicon wafer were conducted. The orthogonal experimental results showed that the influence ratio of electric field intensity and rotation speed on material removal rate (MRR) and surface roughness was more than 80%. The optimal combination of process parameters was electric field intensity 450 V/mm, rotation speed 90 rpm, abrasive concentration 30 wt%, size of abrasive particle 80 nm. Contrast polishing experiments indicated that the MRR and material removal uniformity of DEPP were significantly better than traditional chemical mechanical polishing (CMP). Compared with the traditional CMP, the MRR of DEPP was increased by 17.6%, and the final surface roughness of silicon wafer reached Ra 0.31 nm. DEPP can achieve high-efficiency and high-quality processing of silicon wafer.


2021 ◽  
Vol 9 (7) ◽  
pp. 691
Author(s):  
Kai Hu ◽  
Yanwen Zhang ◽  
Chenghang Weng ◽  
Pengsheng Wang ◽  
Zhiliang Deng ◽  
...  

When underwater vehicles work, underwater images are often absorbed by light and scattered and diffused by floating objects, which leads to the degradation of underwater images. The generative adversarial network (GAN) is widely used in underwater image enhancement tasks because it can complete image-style conversions with high efficiency and high quality. Although the GAN converts low-quality underwater images into high-quality underwater images (truth images), the dataset of truth images also affects high-quality underwater images. However, an underwater truth image lacks underwater image enhancement, which leads to a poor effect of the generated image. Thus, this paper proposes to add the natural image quality evaluation (NIQE) index to the GAN to provide generated images with higher contrast and make them more in line with the perception of the human eye, and at the same time, grant generated images a better effect than the truth images set by the existing dataset. In this paper, several groups of experiments are compared, and through the subjective evaluation and objective evaluation indicators, it is verified that the enhanced image of this algorithm is better than the truth image set by the existing dataset.


Sign in / Sign up

Export Citation Format

Share Document