Optimal Design of an Electrothermal Microfluidic Pump

Author(s):  
E. Du ◽  
Souran Manoochehri

AC electrokinetics in microfluidic systems has been extensively investigated for its great potential in microfluidic pumping applications. The oscillating flow pattern in a microchannel with planar floor configuration restricts the pumping capacity due to the fast recirculating vortices over the electrode surface positioned in the microchannel floor. Patterned microgrooved floor in a fluidic microchannel can be employed to modify the flow pattern and make it uniaxial thus increase the net flow rate. Silicon KOH wet etching can be utilized to fabricate the microgrooved floor of the channel for its highly smooth surface quality and precise and reproducible configuration. We have developed an optimization methodology for the design of microgrooved configuration for a microfluidic pump using alternating current electrothermal (AC ET) actuation mechanism. The flow rate for the AC ET pumping system with optimized microgrooved floor can be higher as compared to the planar case without any significant increases of the temperature profile. In this paper, we are presenting the results of an optimum microgrooved floor configuration for an effective pumping application.

Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the influence of the heat flux and mass velocity on convective heat transfer performance of FC-72 in a rectangular channel of 20mm in width and 2 mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature is maintained at 30°C. The total length of the test channel is 113 mm, with a heated length of 25mm. The flow rate varies between 80 and 960 ml/min, and the heat flux sets between 18 and 50 W/cm2. The experimental results show that the controlling variable is heat flux instead of flow rate because of the boiling activities in FC-72. At a fixed flow rate, the pin-finned surface yields up to 20% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5360-5365
Author(s):  
TOMAS BLEJCHAR ◽  
◽  
SYLVA DRABKOVA ◽  
VACLAV JANUS ◽  
◽  
...  

The energy efficiency of systems, equipment, and sensors is nowadays intensively studied. The new generation of microelectronic sensors is very sophisticated and the energy consumption is in the microwatts range. The energy to power the microelectronic devices can be harvested from oscillating flow in small size channels and so replaceable batteries could be eliminated. Piezoelectric elements can convert energy from oscillation to electrical energy. This paper focuses on the simulation of periodic flow in the fluidic oscillator. CFD simulations were performed for several values of the flow rate. Experimental measurement was carried out under the same conditions as the CFD experiment. The main monitored and evaluated parameters were volume flow rate and pressure loss. Fluid oscillations were analysed based on CFD simulations and the theoretical maximum energy available for the deformation of piezoelectric elements and transformable into electrical energy was evaluated.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Dwayne Chang ◽  
Rustom P. Manecksha ◽  
Konstantinos Syrrakos ◽  
Nathan Lawrentschuk

Objective. To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS).Materials. Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders.Methods. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured.Results. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates.Conclusions. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.


2019 ◽  
Vol 9 (20) ◽  
pp. 4359 ◽  
Author(s):  
Saima Noreen ◽  
Sadia Waheed ◽  
Abid Hussanan ◽  
Dianchen Lu

This article explores the heat and transport characteristics of electroosmotic flow augmented with peristaltic transport of incompressible Carreau fluid in a wavy microchannel. In order to determine the energy distribution, viscous dissipation is reckoned. Debye Hückel linearization and long wavelength assumptions are adopted. Resulting non-linear problem is analytically solved to examine the distribution and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern through perturbation technique. This model is also suitable for a wide range of biological microfluidic applications and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern.


2006 ◽  
Author(s):  
Saad A. Ahemd ◽  
Hayder Salem

Flow instabilities in a compression system at low flow rates set the flow limit of the stable operating range. Experiments to investigate the feasibility of controlling the stall in the radial diffuser of a low speed centrifugal compressor were carried out. The technique was very simple and involved using rough surfaces (i.e., sand papers) attached to the diffuser shroud. The results showed that the flow instability in the diffuser (stall) was delayed to a lower flow coefficient (the mass flow rate could be reduced to 70% of its value with the smooth surface) when the rough surfaces were positioned on the diffuser shroud.


Author(s):  
Rayapati Subbarao ◽  
M. Govardhan

Abstract In a Counter Rotating Turbine (CRT), the stationary nozzle is trailed by two rotors that rotate in the opposite direction to each other. Flow in a CRT stage is multifaceted and more three dimensional, especially, in the gap between nozzle and rotor 1 as well as rotor 1 and rotor 2. By varying this gap between the blade rows, the flow and wake pattern can be changed favorably and may lead to improved performance. Present work analyzes the aspect of change in flow field through the interface, especially the wake pattern and deviation in flow with change in spacing. The components of turbine stage are modeled for different gaps between the components using ANSYS® ICEM CFD 14.0. Normalized flow rates ranging from 0.091 to 0.137 are used. The 15, 30, 50 and 70% of the average axial chords are taken as axial gaps in the present analysis. CFX 14.0 is used for simulation. At nozzle inlet, stagnation pressure boundary condition is used. At the turbine stage or rotor 2 outlet, mass flow rate is specified. Pressure distribution contours at the outlets of the blade rows describe the flow pattern clearly in the interface region. Wake strength at nozzle outlet is more for the lowest gap. At rotor 1 outlet, it is less for x/a = 0.3 and increases with gap. Incidence angles at the inlets of rotors are less for the smaller gaps. Deviation angle at the outlet of rotor 1 is also considered, as rotor 1-rotor 2 interaction is more significant in CRT. Deviation angle at rotor 1 outlet is minimum for this gap. Also, for the intermediate mass flow rate of 0.108, x/a = 0.3 is giving more stage performance. This suggests that at certain axial gap, there is better wake convection and flow outline, when compared to other gap cases. Further, it is identified that for the axial gap of x/a = 0.3 and the mean mass flow rate of 0.108, the performance of CRT is maximum. It is clear that the flow pattern at the interface is changing the incidence and deviation with change in axial gap and flow rate. This study is useful for the gas turbine community to identify the flow rates and gaps at which any CRT stage would perform better.


Sign in / Sign up

Export Citation Format

Share Document