Highly Integrated PiezoMEMS Enabled Millimeter-Scale Robotics

Author(s):  
Jeffrey S. Pulskamp ◽  
Ronald G. Polcawich ◽  
Kenn Oldham

This report provides an overview of ongoing research at the U.S. Army Research Laboratory regarding the development of piezoelectric MEMS-enabled millimeter-scale robotics. Research topics include the development of enabling technologies for terrestrial locomotion, insect-inspired micro-flight, gecko-inspired reversible adhesives, and piezoelectric energy harvesting. The development of complementary lead zirconate titanate thin film MEMS devices, applicable to highly integrated millimeter-scale robotics, is also reviewed.

2019 ◽  
Vol 23 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Naveet Kaur ◽  
Dasari Mahesh ◽  
Sreenitya Singamsetty

Energy harvesting is an emerging technology holding promise of sustainability amid the alarming rate at which the human community is depleting the natural resources to cater its needs. There are several ways of harvesting energy in a renewable fashion such as through solar, wind, hydro-electric, geothermal, and artificial photosynthesis. This study focuses on energy harvesting from wind vibrations and ambient structural vibrations (such as from rail and road bridges) through piezo transducers using the direct piezoelectric effect. First, the potential of the piezoelectric energy harvesting from ambient wind vibrations has been investigated and presented here. Lead zirconate titanate patches have been attached at the fixed end of aluminum rectangular and trapezoidal cantilevers, which have been exposed to varying wind velocity in a lab-size wind tunnel. The effect of perforations and twisting (distortion) on the power generated by the patches under varying wind velocity has also been studied. It has been observed that the power is comparatively higher in rectangular-shaped cantilever than the trapezoidal one. Perforations and shape distortion showed promising result in terms of higher yield. The laboratory experiments have also been extended to the real-life field condition to measure the actual power generated by the lead zirconate titanate patches under the ambient wind vibrations. Next, energy harvesting from the ambient structural vibrations has been done both experimentally and numerically. Four different prototypes have been considered. The power has been measured across the lead zirconate titanate patches individually and in parallel combination. A maximum power output for Prototype 1 to Prototype 4 has been found to be 4.3428, 11.844, 25.97, and 43.12 µW, respectively. Numerical study has also been carried out in ANSYS 14.5 to perform the parametric study to examine the effect of addition of mass at the free end of cantilever. In a nutshell, this article provides a comprehensive study on the effect of various factors on the amount of energy generated by piezoelectric patches under wind and structural vibrations. The energy generated is sufficient for driving low-power-consuming electronics that can further be used for other applications like wireless structural health monitoring, and so on.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


2012 ◽  
Vol 1427 ◽  
Author(s):  
Kanu priya Sharma ◽  
Thomas Oseroff ◽  
Leda Lunardi

ABSTRACTCrack free lead zirconate titanate (PZT) films for piezoelectric based MEMS devices have been prepared by a multiple coating sol gel process on platinized silicon (100) substrates. Rapid thermal annealing and Conventional furnace annealing were used for densification and crystallization of the amorphous PZT films. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to observe surface film morphology and grain growth. The phase content of the films was analyzed using X-ray diffraction. The role of intermetallics formed during the heat treatment in the growth of different orientations has also been observed. Film aging critical for device performance has been observed and methods to revert aging effects have been examined and discussed.


2014 ◽  
Vol 976 ◽  
pp. 159-163 ◽  
Author(s):  
Roberto Ambrosio ◽  
Hector Gonzalez ◽  
Mario Moreno ◽  
Alfonso Torres ◽  
Rafael Martinez ◽  
...  

In this work is presented a study of a piezoelectric energy harvesting device used for low power consumption applications operating at relative low frequency. The structure consists of a cantilever beam made by Lead Zirconate Titanate (PZT) layer with two gold electrodes for electrical contacts. The piezoelectric material was selected taking into account its high coupling coefficients. Different structures were analyzed with variations in its dimensions and shape of the cantilever. The devices were designed to operate at the resonance frequency to get maximum electrical power output. The structures were simulated using finite element (FE) software. The analysis of the harvesting devices was performed in order to investigate the influence of the geometric parameters on the output power and the natural frequency. To validate the simulation results, an experiment with a PZT cantilever with brass substrate was carried out. The experimental data was found to be very close to simulation data. The results indicate that large structures, in the order of millimeters, are the ideal for piezoelectric energy harvesting devices providing a maximum output power in the range of mW


2005 ◽  
Vol 902 ◽  
Author(s):  
Masahiro Akamatsu ◽  
Yoshiaki Yasuda ◽  
Masanao Tani ◽  
Takashi Iijima

AbstractThis study is about new plasma deposition method fabricating piezoelectric films applied for actuators in MEMS devices.


Author(s):  
Mohamed Rhimi ◽  
Nizar Lajnef

Most civil structures have a low vibration response frequency range, generally one to two orders of magnitude lower than the operating frequency spectrum of most piezoelectric energy scavenging devices, which is dictated by the device’s design and the used materials. This considerably limits the levels of harvestable power under ambient vibrations. In this paper, the improvement of the energy harvesting characteristics of a bimorph cantilever lead zirconate titanate (PZT) piezoelectric beam through the application of initial pre-stress loading conditions is studied. A generalized model that can take into account all the vibration modes of the beam as well as the back coupling effect is derived using the Hamiltonian principle. The model describes the effect of the pre-stress parameters on the harvestable energy levels. Results showing the variations of the natural frequency, amplitude, and efficiency of the piezoelectric device with varying preload are presented. Vibration recordings from a bridge under ambient loading are used to show variations of the harvested power with different pre-stress conditions. Increases of up to 250% in the output power levels are shown possible through the application of 8N of compressive axial loading for a system with a 15g vibrating mass. Experimental verification of the model is also performed. The time and frequency domain responses of a piezoelectric bimorph are measured and compared to theoretical results.


2012 ◽  
Vol 05 ◽  
pp. 801-809
Author(s):  
ALI KOOCHEKZADEH ◽  
ESKANDAR KESHAVARZ ALAMDARI ◽  
ABDOLGHAFAR BARZEGAR

The ceramic lead zirconate titanate ( PZT ) films near the morphotropic phase boundary are successfully integrated into MEMS devices, especially for applications in microsensors and actuators. The ferro/piezo electric properties of PZT thick films are widely dependent on its surface quality and crystallographic orientation growth. This paper indicates the influences of platinum bottom electrode on the surface and crystallographic properties of PZT . Ti (10 nm ) and Pt (100 nm ) thin films have been deposited on silicon substrate by thermal evaporation and electron beam respectively without vacuum breaking. After annealing treatment, the Pt film exhibited (111) preferred orientation. Finally one micron thick PZT (54/46) film was deposited by a RF magnetron sputtering at room temperature in pure Argon followed by a conventional post annealing treatment on silicon substrate. The XRD measurements have shown the provskite structure of PZT films with (100) preferred orientation at annealing temperatures above 600°C and (111) preferred orientation above 650°c. The SEM results demonstrate that whatever the annealing temperature is increased, recrystallization grains and black holes on Pt surface occurs and cause morphological change of PZT surface. The AFM test shows the strong RMS roughness of platinum surface after annealing temperature at 650°C.


2006 ◽  
Vol 21 (2) ◽  
pp. 409-419 ◽  
Author(s):  
C. Chima-Okereke ◽  
A.J. Bushby ◽  
M.J. Reece ◽  
R.W. Whatmore ◽  
Q. Zhang

The mechanical properties of lead zirconate titanate (PZT) multilayer systems are needed to model and design micro-electromechanical systems (MEMS) devices. Nanoindentation is a promising tool for obtaining the elastic properties of thin films. However, no means exist to obtain the elastic modulus of the lead zirconate titanate (PZT) in the multilayer system. The indentation modulus versus a/t behavior of the multilayered PZT/Pt/SiO2 film system on a silicon substrate was investigated and compared with finite element models and a new analytical solution. Six different PZT film thicknesses were indented (100, 140, 400, 700, 1500, and 2000 nm), using 5-, 10-, and 20-μm radius indenters. Good agreement was shown between the finite element analysis (FEA) and analytical solutions, and the experimental data. However the behavior of multilayer systems is complex, making deconvolution of properties difficult for films of less than a micron thick.


2020 ◽  
Vol 10 (17) ◽  
pp. 5951
Author(s):  
Carlos Quiterio Gómez Muñoz ◽  
Gabriel Zamacola Alcalde ◽  
Fausto Pedro García Márquez

The main drawback in many electronic devices is the duration of their batteries. Energy harvesting provides a solution for these low-consumption devices. Piezoelectric energy harvesting use is growing because it collects small amounts of clean energy and transforms it to electricity. Synthetic piezoelectric materials are a feasible alternative to generate energy for low consumption systems. In addition to the energy generation, each pressure cycle in the piezoelectric material can provide information for the device, for example, counting the passage of people. The main contribution of this work is to study, build, and test a low-cost energy harvesting floor using piezoelectric transducers to estimate the amount of energy that could be produced for a connected device. Several piezoelectric transducers have been employed and analyzed, providing accurate results.


Sign in / Sign up

Export Citation Format

Share Document