Effect of Interaction Modeling in AFM-Based Nanomanipulation

Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

AFM-based nanomanipulation is very challenging because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In the present paper, we investigate the modeling of AFM-based nanomanipulation emphasizing the effects of the relevant interactions at the nanoscale. The major contribution of the present work is the use of a combined DMT-JKR interaction model in order to describe the complete collision process between the AFM tip and the sample. The coupling between the interactions and the friction at the nanoscale is emphasized. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations.

Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

The use of the atomic force microscope (AFM) as a tool to manipulate matter at the nanoscale has received a large amount of research interest in the last decade. Experimental and theoretical investigations have showed that the AFM cantilever can be used to push, cut, or pull nanosamples. However, AFM-based nanomanipulation suffers a lack of repeatability and controllability because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In this paper, we will investigate the effects of the tip-sample interactions on nanopushing manipulation. We propose the use of an interaction model based on the Maugis–Dugdale contact mechanics. The efficacy of the proposed model to reproduce experimental observations is demonstrated via numerical simulations. In addition, the coupling between adhesion and friction at the nanoscale is analyzed.


Author(s):  
Larissa Steiger de Freitas ◽  
Marcus Vinícius Canhoto Alves ◽  
Rafael Rodrigues Francisco

2020 ◽  
Vol 17 (6) ◽  
pp. 511-522 ◽  
Author(s):  
Alicia Graciela Cid ◽  
María Verónica Ramírez-Rigo ◽  
María Celeste Palena ◽  
Elio Emilio Gonzo ◽  
Alvaro Federico Jimenez-Kairuz ◽  
...  

Background: Mathematical modeling in modified drug release is an important tool that allows predicting the release rate of drugs in their surrounding environment and elucidates the transport mechanisms involved in the process. Objective: The aim of this work was to develop a mathematical model that allows evaluating the release profile of drugs from polymeric carriers in which the swelling phenomenon is present. Methods: Swellable matrices based on ionic complexes of alginic acid or carboxymethylcellulose with ciprofloxacin were prepared and the effect of adding the polymer sodium salt on the swelling process and the drug release was evaluated. Experimental data from the ciprofloxacin release profiles were mathematically adjusted, considering the mechanisms involved in each stage of the release process. Results: A proposed model, named “Dual Release” model, was able to properly fit the experimental data of matrices presenting the swelling phenomenon, characterized by an inflection point in their release profile. This entails applying the extended model of Korsmeyer-Peppas to estimate the percentage of drug released from the first experimental point up to the inflection point and then a model called Lumped until the final time, allowing to adequately represent the complete range of the drug release profile. Different parameters of pharmaceutical relevance were calculated using the proposed model to compare the profiles of the studied matrices. Conclusion: The “Dual Release” model proposed in this article can be used to predict the behavior of complex systems in which different mechanisms are involved in the release process.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


2017 ◽  
Vol 1 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Yongqiang Sun ◽  
Dina Liu ◽  
Nan Wang

Abstract Although user information disclosure behavior in the context of social network service(SNS) has been well studied in previous literature, there is a lack of understanding about user information withholding behavior. To fill this research gap, the present study assumes that there might be a three-way interaction among information sensitivity, prevention focus, and interdependent self-construal regarding information withholding. The proposed model is empirically tested through an online survey of 479 users in the context of WeChat, one of the most popular SNSs in China. The results of hierarchical regression analysis verify the three-way interaction that prevention focus positively moderates the relationship between information sensitivity and information withholding, and interdependent self-construal strengthens the moderating effect of prevention focus. Findings in light of theoretical and practical implications as well as limitations of the study are discussed.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Author(s):  
Stephanie Follett ◽  
Amer Hameed ◽  
S. Darina ◽  
John G. Hetherington

In order to validate the numerical procedure, the explosion of a mine was recreated within the non-linear dynamics software, AUTODYN. Two models were created and analysed for the purposes of this study — buried and flush HE charge in sand. The explosion parameters — time of arrival, maximum overpressure and specific impulse were recorded at two stand-off distances above the ground surface. These parameters are then compared with LS-DYNA models and published experimental data. The results, presented in table format, are in reasonable agreement.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Andrea Rapisarda ◽  
Alessio Desando ◽  
Elena Campagnoli ◽  
Roberto Taurino

The design of modern aircrafts propulsion systems is strongly influenced by the important objective of environmental impact reduction. Through a great number of researches carried out in the last decades, significant improvements have been obtained in terms of lower fuel consumption and pollutant emission. Experimental tests are a necessary step to achieve new solutions that are more efficient than the current designs, even if during the preliminary design phase, a valid alternative to expensive experimental tests is the implementation of numerical models. The processing power of modern computers allows indeed the simulation of more complex and detailed phenomena than the past years. The present work focuses on the implementation of a numerical model for rotating stepped labyrinth seals installed in low-pressure turbines. These components are widely employed in sealing turbomachinery to reduce the leakage flow between rotating components. The numerical simulations were performed by using computational fluid dynamics (CFD) methodology, focusing on the leakage performances at different rotating speeds and inlet preswirl ratios. Investigations on velocity profiles into seal cavities were also carried out. To begin with, a smooth labyrinth seal model was validated by using the experimental data found in the literature. The numerical simulations were extended to the honeycomb labyrinth seals, with the validation performed on the velocity profiles. Then, the effects of two geometrical parameters, the rounded fin tip leading edge, and the step position were numerically investigated for both smooth and honeycomb labyrinth seals. The obtained results are generally in good agreement with the experimental data. The main effect found when the fin tip leading edge was rounded was a large increase in leakage flow, while the step position contribution to the flow path behavior is nonmonotone.


2016 ◽  
Vol 66 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Michal Šofer ◽  
Rostislav Fajkoš ◽  
Radim Halama

AbstractThe main aim of the presented paper is to show how heat treatment, in our case the induction hardening, will affect the wear rates as well as the ratcheting evolution process beneath the contact surface in the field of line rolling contact. Used wear model is based on shear band cracking mechanism [1] and non-linear kinematic and isotropic hardening rule of Chaboche and Lemaitre. The entire numerical simulations have been realized in the C# programming language. Results from numerical simulations are subsequently compared with experimental data.


2020 ◽  
pp. 93-98
Author(s):  
Viktar V. Tur ◽  
Radoslaw Duda ◽  
Dina Khmaruk ◽  
Viktar Basav

In this paper, a modified strains development model (MSDM) for expansive concrete-filled steel tube (ECFST) was formulated and verified on the experimental data, obtained from testing specimens on the expansion stage. The modified strain development model for restraint strains and self-stresses values estimation in concrete with high expansion energy capacity under any type of the symmetrical and unsymmetrical finite stiffness restraint conditions was proposed. Based on proposed MSDM a new model for expansive concrete-filled steel tubes is developed. The main difference between this model and other previously developed models consists in taking into account in the basic equations an induced force in restrain that is considered as an external load applied to the concrete core of the member. For verification of the proposed model-specific experimental studies were performed. As follows from comparison results restrained expansion strains values calculated following the proposed model shows good compliance with experimental data. The values predicted by the proposed MSDM for concrete-filled steel and obtained experimental data demonstrated good agreement that confirms the validity of the former.


Sign in / Sign up

Export Citation Format

Share Document