An Introduction to Rational Design Theory

Author(s):  
Stephanie C. Thompson ◽  
Christiaan J. J. Paredis

Design theories provide theoretical foundation for design and can lead to insights that improve the practice of design. From a theoretical perspective, existing design theories have some major limitations that limit the insights that can be gained and restrict their applicability in practice. These limitations include the treatment of uncertainty and the lack of interaction of concerns regarding the designed artifact and the design process. In this paper, a new design theory is introduced that explicitly includes uncertainty considerations and enables quantitative tradeoffs between the utility of the product and the process. This new theory is inspired by decision theory and expands upon the traditional product-centric perspective of decision-based design; the new theory is therefore termed Rational Design Theory (RDT). RDT combines a decision-theory-inspired descriptive model of artifact design decisions with a normative perspective for design process decisions. This theory provides new insights into the process of design that can inspire improved design methods. Furthermore, RDT provides a quantitative framework for comparing the relative performance of different design processes.

2003 ◽  
Vol 57 (2) ◽  
pp. 431-444 ◽  
Author(s):  
Barbara Koremenos ◽  
Duncan Snidal

We reply to John Duffield's critique of the Rational Design project, a special issue of International Organization that explains the features of international institutions from a game-theoretic perspective. The project was deliberately limited to the analysis of explicit and observable institutional arrangements, and focused on the specific institutional properties of centralization, membership, scope, control, and flexibility. Its empirical contribution relies on case studies, but it is significantly amplified by the tight connections provided by a common theoretical perspective that is oriented toward testing a set of specific conjectures about institutional design. The results raise further issues of measurement and cross-case comparisons that provide valuable lessons for future work on institutional design. Although all of these research design choices are worth revisiting and questioning, as Duffield does, the initial results of the Rational Design project show that it provides a good basis from which to explore alternative research design decisions.


Design Issues ◽  
2021 ◽  
Vol 37 (4) ◽  
pp. 9-22
Author(s):  
Joachim Knape

Abstract This article deals primarily with object design from a production-theoretical perspective. It is focused on the question of the rhetorical achievement of design, i.e., its persuasiveness, which was already discussed by Buchanan and Krippendorf in 1985. To this day, the relationship between aesthetic and rhetorical calculuses in the design process is controversial in theoretical discussion. The solution to the problem: Aesthetics and rhetoric combine in the appeal structure (1) at the moment of creation of design and (2) at the moment of the user's decision for an object. In these processes, the design argument results from the combination of aestheticized gestalt and rhetorical appeal of an object.


Author(s):  
Sándor Vajna ◽  
Tibor Bercsey ◽  
Steffen Clement ◽  
Peter Mack

Abstract Based on an analysis of the product development process and the study of relevant product development models, the paper presents a new approach aiming at modeling and supporting the design activity as the substantial activity within the product development process. The Autogenetic Design Theory is an approach advancing general design theories. It facilitates the integration of intuition, creativity and artificial intelligence into the conventional design process. To this end, a phase-like allocation of the design process is assumed as the essential structure and an evolutionary algorithm is integrated as the core facilitating purposeful searching and combining. Hence, the flow of the design process can be influenced as all requirements can be included and, on the other hand, intuition and creativity are ensured through the evolutionary algorithm.


CounterText ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 217-235
Author(s):  
Gordon Calleja

This paper gives an insight into the design process of a game adaptation of Joy Division's Love Will Tear Us Apart (1980). It outlines the challenges faced in attempting to reconcile the diverging qualities of lyrical poetry and digital games. In so doing, the paper examines the design decisions made in every segment of the game with a particular focus on the tension between the core concerns of the lyrical work being adapted and established tenets of game design.


2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


Author(s):  
Nadine Nagler ◽  
Armin Lohrengel

AbstractOverrunning clutches, also known as freewheel clutches, are frictionally engaged, directional clutches; they transmit torque depending on the Freewheel clutch rings’ rotation directions. The torque causes a tangential force in the Hertzian contact area. The hitherto “state-of-the-art design criterion” bases on this load situation. In practice, axial loads additionally act on the frictionally engaged Hertzian contact area. This additional axial load can cause the loss of the friction connection and so the freewheel clutch slips. This publication presents an improved design criterion for frictionally engaged contacts in freewheel clutches. It allows to consider tangential as well as axial loads during the design process. Additionally, it offers the possibility to estimate the probability of frictional engagement loss and gross slip based on the freewheel clutch’s application scenario. This publication points out how to use the improved design criterion to design freewheel clutches that are more robust against a loss of function.


Author(s):  
Camila Freitas Salgueiredo ◽  
Armand Hatchuel

AbstractIs biologically inspired design only an analogical transfer from biology to engineering? Actually, nature does not always bring “hands-on” solutions that can be analogically applied in classic engineering. Then, what are the different operations that are involved in the bioinspiration process and what are the conditions allowing this process to produce a bioinspired design? In this paper, we model the whole design process in which bioinspiration is only one element. To build this model, we use a general design theory, concept–knowledge theory, because it allows one to capture analogy as well as all other knowledge changes that lead to the design of a bioinspired solution. We ground this model on well-described examples of biologically inspired designs available in the scientific literature. These examples include Flectofin®, a hingeless flapping mechanism conceived for façade shading, and WhalePower technology, the introduction of bumps on the leading edge of airfoils to improve aerodynamic properties. Our modeling disentangles the analogical aspects of the biologically inspired design process, and highlights the expansions occurring in both knowledge bases, scientific (nonbiological) and biological, as well as the impact of these expansions in the generation of new concepts (concept partitioning). This model also shows that bioinspired design requires a special form of collaboration between engineers and biologists. Contrasting with the classic one-way transfer between biology and engineering that is assumed in the literature, the concept–knowledge framework shows that these collaborations must be “mutually inspirational” because both biological and engineering knowledge expansions are needed to reach a novel solution.


Author(s):  
Tomasz Arciszewski

Abstract The paper provides a brief review of general tendencies and interesting developments in the area of engineering design theory and methodology in Eastern Europe. This review is limited to East Germany, Poland, and the Soviet Union. Particular attention was given to the design research environments in individual countries, and to developed design theories and methods in the context of these environments.


2021 ◽  
Vol 27 (1) ◽  
pp. 9-17
Author(s):  
V. P. Bui ◽  
◽  
S. S. Gavruishin ◽  
V. B. Phung ◽  
H. M. Dang ◽  
...  

A new technique is described, used by the authors to automate the design process of the main drive of a new generation machine intended for industrial washing of fruits and vegetables. To solve the problem of multi-criteria design, the original approach is proposed that uses interconnected mathematical models describing the dynamic behavior, strength reliability and functional characteristics of the machine in a unified information space. The generalized mathematical model includes 12 controlled parameters, 16 functional constraints, and 3 quality criteria. A genetic algorithm was used to find the space of Pareto-optimal solutions. The situational approach was used to select the final rational solution from a set of solutions belonging to the Pareto-optimal domain. The rational design of option the washer found using the proposed approach is compared with the existing ones. The proposed design methodology can be recommended for the design of a wide range of similar mechanical structures.


Author(s):  
Mats Nordlund ◽  
Taesik Lee ◽  
Sang-Gook Kim

In 1977, Nam P Suh proposed a different approach to design research. Suh’s approach was different in that it introduced the notions of domains and layers in a 2-D design thinking and stipulated a set of axioms that describes what is a good design. Following Suh’s 2-D reasoning structure in a zigzagging manner and applying these axioms through the design process should enable the designer to arrive at a good design. In this paper, we present our own experiences in applying Suh’s theories to software design, product design, organizational design, process design, and more in both academic and industrial settings. We also share our experience from teaching the Axiomatic Design theory to students at universities and engineers in industry, and draw conclusions on how best to teach and use this approach, and what results one can expect. The merits of the design axioms are discussed based on the practical experiences that the authors have had in their application. The process developed around the axioms to derive maximum value (solution neutral environment, design domains, what-how relationship, zig-zag process, decomposition, and design matrices) is also discussed and some updates are proposed.


Sign in / Sign up

Export Citation Format

Share Document