Multiphysics Modeling of a Tilting Pad Thrust Bearing: Comparison Between White Metal and Polymeric Layered Pads

Author(s):  
R. Ricci ◽  
S. Chatterton ◽  
P. Pennacchi ◽  
A. Vania

Oil-film tilting pad thrust bearings are mainly used in supporting the high axial load of the turbine shaft in vertical hydroelectric units or smaller axial loads of turbo machines. The trend for these applications is to replace the white metal with a polymeric material layer such as PTFE or PEEK, improving the bearing performances and extending its operating conditions. This leads to a reduction of the bearing overall dimensions as a consequence of the load capacity increase. Apart the friction and the resistance to chemical attacks properties of the polymeric layer, the main cause on the improved performances of the bearing is the compliance of the pad layer. In particular the polymeric layer reduces the typical pad crowning allowing a more uniform pressure distribution over the pad and a reduction of its maximum value with respect to Babbitt metal pads. Therefore, the design of layered pad requires a deeper investigation such as thermoelastohydrodynamic (TEHD) analyses, including oilthermal effects and bearing thermal deformation. In the paper, the performance of Babbitt metal and polymeric layered pads of standard size offset-pivoted tilting pad thrust bearings of vertical axis units are compared using a multiphysics software able to manage simultaneously the mechanical, the thermal and the fluid problems. Layer and pad deformation, temperature and pressure distributions, and oil-film thickness have been analysed for different operating conditions. The model has been validated using experimental data available in literature.

1969 ◽  
Vol 91 (1) ◽  
pp. 181-193 ◽  
Author(s):  
H. Mori ◽  
Y. Miyamatsu

In order to make clear the characteristics of externally pressurized gas bearings, several mathematical flow-models are constructed by making proper chains of fundamental and elemental flow-patterns and pressure changes for circular thrust bearings with single central supply hole. The suggested flow-models, which are the combination of rather simple elements to make the mathematical analysis easy, are quite effective to explain the pressure distributions, the load capacity, and the rate of flow observed experimentally over wide operating conditions. And also, these flow-models make it possible to understand the effects of the inherent compensation, the so-called restrictions in series and the occurrence of shock wave.


Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading edge taper. The measurements are compared to theoretical values obtained using a three dimensional thermoelasto-hydrodynamic (TEHD) numerical model. At low and intermediate loads the theoretical pressure distribution corresponds well to the measured values for both pads although the influence of the pocket is slightly underestimated. At high loads large discrepancies exist for the pad with an injection pocket. It is argued that this is likely to be due to the unevenness of the collar surface. The measured and theoretical values of oil film thickness compare well at low loads. At high loads discrepancies grow to up to 25 %. It is argued that this is due to the accuracy of the measurements.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2016 ◽  
Vol 68 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Amit Singla ◽  
Amit Chauhan

Purpose The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing. Design/methodology/approach The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100). Findings It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity. Originality/value The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.


2014 ◽  
Vol 900 ◽  
pp. 405-409
Author(s):  
Xiang Jun Yu ◽  
Zuo Xin Li ◽  
Ke Nan Shen ◽  
Shuang You ◽  
An Jun Wu

The oil-film bearings are widely used in mechanical transmission due to the good performance. In normal operating conditions, the journal and bearing shell are separated by the oil film, which contributes to the reduction of wear. And the stability and reliability of oil film has a great effect on load capacity. The paper briefly introduces research methods of the load capacity of oil-film bearings and points out some aspects of large oil-film bearings for in-depth study. Then combining dynamic simulation with experimental test on the scaled model of whole machine, a dynamic research idea is presented for large oil-film bearings.


2005 ◽  
Vol 128 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Kazunori Ikeda ◽  
Toshio Hirano ◽  
Tatsuo Yamashita ◽  
Makoto Mikami ◽  
Hitoshi Sakakida

Direct lubrication tilting pad journal bearings (DLTPJ bearings) have rarely been applied to large-scale rotating machinery, such as turbines or generators, whose journal diameters are more than 500mm. In this paper, static and dynamic characteristics of a 580mm(22.8in.) diameter DLTPJ bearing were studied experimentally using a full-scale bearing test rig. In the static test, distribution of metal temperature, oil film pressure, and bearing loss were measured in changing oil flow rate, with mean bearing pressure ranging up to 2.9MPa. The maximum metal temperature of the DLTPJ bearing was compared to that of a conventional flood lubrication bearing, and it was confirmed that the direct lubrication could increase load capacity. In the dynamic test, spring and damping coefficients of oil film were obtained by exciting the bearing casing that was floated by air bellows. These data will be used for analysis and design of steam turbine rotors and their bearing systems. Also, vibration of pads was investigated because metal failure on upper pads due to vibration has been found in some actual machines. In order to generate oil film pressure on the surface of upper pads, a Rayleigh-step was machined there, and it was confirmed that vibration was reduced by the Rayleigh-step.


2000 ◽  
Vol 123 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Sergei B. Glavatskikh

The paper reports results of the experimental investigation into the steady state performance characteristics of a tilting pad thrust bearing typical of design in general use. Simultaneous measurements are taken of the pad and collar temperatures, the pressure distributions, oil film thickness, and power loss as a function of shaft speed, bearing load, and supplied oil temperature. The effect of operating conditions on bearing performance is discussed. A small radial temperature variation is observed in the collar. A reduction in minimum oil film thickness with load is approximately proportional to p−0.6, where p is an average bearing pressure. It has also been found that the oil film pressure profiles change not only due to the average bearing load but also with an increase in shaft speed and temperature of the supplied oil.


1987 ◽  
Vol 109 (3) ◽  
pp. 395-401 ◽  
Author(s):  
A. Artiles ◽  
H. Heshmat

A method of analysis is described treating starvation in finite thrust bearing pads. A variable-size finite difference mesh is used to represent the two-dimensional temperature and pressure fields. A combination of Newton-Raphson iteration, direct iteration, and column matrix methods are used to solve for the start-of-film and minimum film thickness as well as the coupled two-dimensional energy and Reynolds equations. A parametric study describes the performance characteristics of the tapered land thrust bearing (flowrates, extent of fluid film, temperature rises, load capacity and torque) for different minimum film thicknesses and levels of starvation. This study considered variations in the geometrical parameters such as pad aspect ratio (L/R2=1/3, 1/2, 2/3) and extent of the pad (β=27, 42, and 57 deg) with an optimum taper ratio (β1/β=0.8). It is found that the effects of starvation are fairly small near the flooded condition but accelerate rapidly below the 50 percent starvation level. The start of the film (θ1) depends mostly on the level of starvation, and is essentially independent of the geometrical parameters, operating conditions or film thickness.


Author(s):  
A. J. Leopard

The design requirements of thrust bearings for power gas turbines are discussed with reference to designs which have given satisfactory service. The shortcomings of these designs are analyzed both from the point of view of efficiency and that of service experience. The development of a new system of lubrication designed to overcome these shortcomings is outlined. It is shown that this system, when applied to tilting pad thrust bearings in power turbines, can result in a simpler bearing assembly with increased load capacity and substantially ower power losses.


Sign in / Sign up

Export Citation Format

Share Document