An Approach to Study Impact of Public Policy, Exogenous Variables, and Vehicle Design on Greenhouse Gas Emission

Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public policies and uncontrollable (exogenous) variables as well as optimal vehicle design on greenhouse gas (GHG) emissions in the US transportation sector. The overall model is divided into the government model and an enterprise model. To examine the effect of GHG emissions and exogenous variables, the optimization model includes public policy, exogenous variables, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. An exogenous variable taken into consideration are gasoline prices. For each selection of public policy and exogenous variables in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions for that selection and can choose a public policy accordingly to produce a desired effect. This paper demonstrates the model using FCV design as an illustrative example.

Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.


2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


2015 ◽  
Vol 787 ◽  
pp. 187-191
Author(s):  
P.M. Sivaram ◽  
N. Gowdhaman ◽  
D.Y. Ebin Davis ◽  
M. Subramanian

Global warming and climate change are the foremost environmental challenges facing the world today. It is our responsibility to minimize the consumption of energy and hence reduce the emissions of greenhouse gases. Companies choose ‘Carbon Footprint’ as a tool to calculate the greenhouse gas emission to show the impact of their activities on the environment. In this working paper, we assess the carbon foot print of an educational institution and suggest suitable measures for reducing it. Greenhouse gas emitting protocol for an academic institution in terms of tones of equivalent CO2 per year is projected using three basic steps includes planning (assessment of data’s), calculation and estimation of CO2 emitted. The estimation of carbon foot print is calculated by accounting direct emission from sources owned/controlled by the educational institution and from indirect emission i.e. purchased electricity, electricity produced by diesel Generator (DG), transport, cooking (Liquefied Petroleum Gas) and other outsourced distribution. The CO2 absorbed by trees are also accounted. Some of the options are identified in order to reduce CO2 level. The information of corporate carbon footprint helps us identifying the Green House Gases (GHG) emission “hot spots” and identifies where the greatest capacity exists in order to reduce the GHG emissions. The main prioritization goes to transport and then followed by DG, cooking and then electricity. The per capita CO2 emission and the total CO2 emission for a typical educational institution are estimated.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Ayeah Israel ◽  
Joseph Amikuzuno ◽  
Gideon Danso-Abbeam

Abstract Background The adoption of climate-smart agricultural (CSA) practices is expected to improve farmers’ adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas (GHG) emissions. This paper explores the determinants of smallholder farmers’ participation in GHG-emitting activities. It also estimates the impact of CSA activities on reducing GHG emissions. Methods The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana. We adopted the generalized Poisson regression model in identifying factors influencing farmers’ participation in the GHG emission practices and inverse-probability-weighted regression adjustment (IPWRA) to estimate the impact of CSA adoption on GHG emissions. Results Most farming households engaged in at least one emission activity. The findings of the generalized Poisson model found that wealthier households, higher education, and households with access to extension services were less likely to participate in GHG emission activities. There was also evidence that CSA adoption significantly reduces GHG emissions. Conclusion Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.


2020 ◽  
Vol 2 (3) ◽  
pp. 331-339
Author(s):  
Mubarok

In this reform era, public policy has become an essential matter for every citizen. Therefore, the government must be able to make public policies that are pro-society. Here the government is required not only to make right or wrong policies based on law but also to see the ethical and moral dimensions in society. An act that is law-abiding is not inherently moral and ethically correct. This study aims to clarify the importance of morality and ethics for decision-making officials by offering an overview of public policy ethics in Indonesia in general.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Laborde ◽  
Abdullah Mamun ◽  
Will Martin ◽  
Valeria Piñeiro ◽  
Rob Vos

AbstractAgricultural production is strongly affected by and a major contributor to climate change. Agriculture and land-use change account for a quarter of total global emissions of greenhouse gases (GHG). Agriculture receives around US$600 billion per year worldwide in government support. No rigorous quantification of the impact of this support on GHG emissions has been available. This article helps fill the void. Here, we find that, while over the years the government support has incentivized the development of high-emission farming systems, at present, the support only has a small impact in terms of inducing additional global GHG emissions from agricultural production; partly because support is not systematically biased towards high-emission products, and partly because support generated by trade protection reduces demand for some high-emission products by raising their consumer prices. Substantially reducing GHG emissions from agriculture while safeguarding food security requires a more comprehensive revamping of existing support to agriculture and food consumption.


Author(s):  
Moneim Massar ◽  
Imran Reza ◽  
Syed Masiur Rahman ◽  
Sheikh Muhammad Habib Abdullah ◽  
Arshad Jamal ◽  
...  

The potential effects of autonomous vehicles (AVs) on greenhouse gas (GHG) emissions are uncertain, although numerous studies have been conducted to evaluate the impact. This paper aims to synthesize and review all the literature regarding the topic in a systematic manner to eliminate the bias and provide an overall insight, while incorporating some statistical analysis to provide an interval estimate of these studies. This paper addressed the effect of the positive and negative impacts reported in the literature in two categories of AVs: partial automation and full automation. The positive impacts represented in AVs’ possibility to reduce GHG emission can be attributed to some factors, including eco-driving, eco traffic signal, platooning, and less hunting for parking. The increase in vehicle mile travel (VMT) due to (i) modal shift to AVs by captive passengers, including elderly and disabled people and (ii) easier travel compared to other modes will contribute to raising the GHG emissions. The result shows that eco-driving and platooning have the most significant contribution to reducing GHG emissions by 35%. On the other side, easier travel and faster travel significantly contribute to the increase of GHG emissions by 41.24%. Study findings reveal that the positive emission changes may not be realized at a lower AV penetration rate, where the maximum emission reduction might take place within 60–80% of AV penetration into the network.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2021 ◽  
Author(s):  
Katerina Machacova ◽  
Hannes Warlo ◽  
Kateřina Svobodová ◽  
Thomas Agyei ◽  
Tereza Uchytilová ◽  
...  

&lt;p&gt;Trees are known to be sources of methane (CH&lt;sub&gt;4&lt;/sub&gt;), an important greenhouse gas, into the atmosphere. However, still little is known about the seasonality of the tree stem CH&lt;sub&gt;4&lt;/sub&gt; fluxes, particularly for the dormant season, and about the impact of environmental parameters on this gas exchange. This makes the estimation of net annual ecosystem CH&lt;sub&gt;4&lt;/sub&gt; fluxes difficult.&lt;/p&gt;&lt;p&gt;We determined seasonal dynamics of CH&lt;sub&gt;4&lt;/sub&gt; exchange of mature European beech stems (&lt;em&gt;Fagus sylvatica&lt;/em&gt;) and of adjacent forest floor in a temperate montane forest of White Carpathians, Czech Republic, from November 2017 to December 2018. We used static chamber methods and gas chromatographic analyses. We aimed to understand the unknown role in seasonal changes of CH&lt;sub&gt;4&lt;/sub&gt; fluxes of these forests, and the spatiotemporal variability of the tree fluxes.&lt;/p&gt;&lt;p&gt;The beech stems were net annual sources for atmospheric CH&lt;sub&gt;4&lt;/sub&gt;, whereas the forest floor was a predominant sink for CH&lt;sub&gt;4&lt;/sub&gt;. The stem CH&lt;sub&gt;4&lt;/sub&gt; emissions showed high inter-individual variability and clear seasonality following the stem CO&lt;sub&gt;2&lt;/sub&gt; efflux. The fluxes of CH&lt;sub&gt;4&lt;/sub&gt; peaked during the vegetation season, and remained low but significant to the annual totals during winter dormancy. By contrast, the forest floor CH&lt;sub&gt;4&lt;/sub&gt; uptake followed an opposite flux trend with low CH&lt;sub&gt;4&lt;/sub&gt; uptake detected in the winter dormant season and elevated CH&lt;sub&gt;4&lt;/sub&gt; uptake during the vegetation season. Based on our preliminary analyses, the detected high spatial variability in stem CH&lt;sub&gt;4&lt;/sub&gt; emissions can be explained neither by the CH&lt;sub&gt;4&lt;/sub&gt; exchange at the forest floor level, nor by soil CH&lt;sub&gt;4&lt;/sub&gt; concentrations, soil water content and soil temperature, all measured in vertical soil profiles close to the studied trees.&lt;/p&gt;&lt;p&gt;European beech trees, native and widely spread species of Central Europe, seem to markedly contribute to the seasonal dynamics of the ecosystem CH&lt;sub&gt;4&lt;/sub&gt; exchange, and their CH&lt;sub&gt;4&lt;/sub&gt; fluxes should be included into forest greenhouse gas emission inventories.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;em&gt;Acknowledgement&lt;/em&gt;&lt;/p&gt;&lt;p&gt;&lt;em&gt;This research was supported by the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415), CzeCOS (LM2015061), and SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). We thank Libor Bor&amp;#225;k and Leszek Dariusz Laptaszy&amp;#324;ski for their technical and field support.&lt;/em&gt;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2014 ◽  
Vol 1010-1012 ◽  
pp. 2094-2101
Author(s):  
Long Xi Han ◽  
Jia Jia Zhai ◽  
Lin Zhang

The opportunities and challenges in the field of Chinese renewable energy were analyzed through the impact of global greenhouse gas (GHG) emission reduction trade, especially CDM on Chinese renewable energy, combined with the enhancement of awareness of voluntary emission reduction, relationship between emission reduction trade and renewable energy, changes in the international trade environment and the rise of the domestic trading system. It is suggested that the renewable energy industry integrates with GHG emission reduction trading system in China and explores the huge double benefit of emission reduction and income increase with market means, providing a reference for the smooth implementation of nationwide CN ETS including varies industries in the carbon trading market in the future, and striving for the speaking right for China to set the marketing price of international GHG emission reduction trading in the future.


Sign in / Sign up

Export Citation Format

Share Document