Modelling and Parameter Identification for a Flexible Rotor With Periodic Impacts

2021 ◽  
Author(s):  
Stefan Holzinger ◽  
Manuel Schieferle ◽  
Johannes Gerstmayr ◽  
Manfred Hofer ◽  
Christoph Gutmann

Abstract The ability of a multibody dynamics model to accurately predict the behavior of a real system depends heavily on the correct choice of model parameters. The identification of unknown system parameters, which cannot be directly computed or measured is usually time consuming and costly. If experimental measurement data of the real system is available, the parameters in the mathematical model can be determined by minimizing the error between the model response and the measurement data. The latter task can be solved by means of optimization. While many optimization methods are available, optimization with a genetic algorithm is a promising approach for searching optimal solutions for complex engineering problems, as reported in a paper of one of the authors. So far, however, there is no general approach how to apply genetic optimization algorithms for complex multibody system dynamics models in order to obtain unknown parameters automatically — which is however of great importance when dealing with real flexible multibody systems. In the present paper we present a methodology to determine several unknown system parameters applied to a flexible rotor system which is excited with periodic impacts. Experiments were performed on the physical system to obtain measurement data which is used to identify the impact force as well as the support stiffnesses of the rotor system using genetic optimization.

ACTA IMEKO ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 39 ◽  
Author(s):  
Leonard Klaus ◽  
Barbora Arendacká ◽  
Michael Kobusch ◽  
Thomas Bruns

For the dynamic calibration of torque transducers, a model of the transducer and an extended model of the mounted transducer including the measuring device have been developed. The dynamic behaviour of a torque transducer under test is going to be described by its model parameters. This paper describes the models with these known and unknown parameters and how the calibration measurements are going to be carried out. The principle for the identification of the transducer's model parameters from measurement data is described using a least squares approach. The influence of a variation of the transducer's parameters on the frequency response of the expanded model is analysed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Michael Souza ◽  
Daniel Castello ◽  
Ney Roitman ◽  
Thiago Ritto

Several damage identification approaches are based on computational models, and their diagnostics depend on the set of modelling hypotheses adopted when building the model itself. Among these hypotheses, the choice of appropriate damping models seems to be one of the key issues. The goal of this paper is to analyze the impact of a set of damping models on the damage identification diagnostics. The damage identification is built on a Bayesian framework, and the measured data are the modal data associated with the first modes of the structure. The exploration of the posterior density of unknown model parameters is performed by means of the Markov chain Monte Carlo method (MCMC) with Delayed Rejection Adaptive Metropolis (DRAM) algorithm. The analyses are based on experimental dynamic response obtained from an aluminum beam instrumented with a set of accelerometers. The presence of damage/anomaly within the system is physically simulated by placing lumped masses over the beam, considering three different masses and two different placing positions. For the set of cases analyzed, it is shown that the proposed approach was able to identify both the position and magnitude of the lumped masses and that the damping models may not provide an increase of knowledge of some unknown parameters when damping rates are lower than 1%.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Paul G. Arauz ◽  
Sue A. Sisto ◽  
Imin Kao

This article presented an assessment of quantitative measures of workspace (WS) attributes under simulated proximal interphalangeal (PIP) joint arthrodesis of the index finger. Seven healthy subjects were tested with the PIP joint unconstrained (UC) and constrained to selected angles using a motion analysis system. A model of the constrained finger was developed in order to address the impact of the inclusion of prescribed joint arthrodesis angles on WS attributes. Model parameters were obtained from system identification experiments involving flexion–extension (FE) movements of the UC and constrained finger. The data of experimental FE movements of the constrained finger were used to generate the two-dimensional (2D) WS boundaries and to validate the model. A weighted criterion was formulated to define an optimal constraint angle among several system parameters. Results indicated that a PIP joint immobilization angle of 40–50 deg of flexion maximized the 2D WS. The analysis of the aspect ratio of the 2D WS indicated that the WS was more evenly distributed as the imposed PIP joint constraint angle increased. With the imposed PIP joint constraint angles of 30 deg, 40 deg, 50 deg, and 60 deg of flexion, the normalized maximum distance of fingertip reach was reduced by approximately 3%, 4%, 7%, and 9%, respectively.


1997 ◽  
Vol 119 (1) ◽  
pp. 178-185 ◽  
Author(s):  
T. N. Shiau ◽  
G. J. Sheu ◽  
C. D. Yang

The vibration and active control of a flexible rotor system with magnetic bearings are investigated using Hybrid Method (HM) and H∞ control theory with consideration of gyroscopic effect. The hybrid method, which combines the merits of the finite element method (FEM) and generalized polynomial expansion method (GPEM) is employed to model the flexible rotor system with small order of plant. The mixed sensitivity problem of H∞ control theory is applied to design the control of system vibration with spillover phenomena for the reduced order plant. The H2 control design is also employed for comparison with the H∞ design. The experimental simulation is used to illustrate the effects of control design. It is shown that the H∞ controller design can be very effective to suppress spillover phenomena. In addition, the H∞ control design has robustness to the variation of the model parameters. The application of the hybrid method (HM) together with H∞ control design is highly recommended for vibration control of flexible rotor systems with magnetic bearings.


Author(s):  
Wesley D. Franklin ◽  
Agnes Muszynska ◽  
Donald E. Bently

Nonsynchronous perturbation techniques developed over the last few years have proven to be a very powerful tool for parameter identification of rotating systems. In order to obtain interpretable results, some limitations have had to be imposed on the analytical models and rotor systems used in the process, such as applied forces, and measurement transducers had to be located near major masses on the rotor. In the laboratory environment these limitations can usually be accommodated, but not always, while in the field, compliance is almost impossible. This paper explores the use of finite element modeling, measured vibration response data, and optimization techniques to extend the applicability of parameter identification through nonsynchronous perturbation techniques to those systems in which the perturbation forces and/or resultant response measurements cannot be conveniently located at the mass centers. In this technique, a finite element model of the rotor system is constructed, and all known information about the system parameters input to a computer program designed to operate on a personal computer. The program then computes the theoretical response of the system, by processing user-supplied initial conditions for the unknown system parameters, and compares these results with the vibration responses measured on the machine, and collected by the data acquisition system. The unknown parameters are then modified using local convergence optimization techniques until the error between the theoretical and measured responses is acceptably small. If the system parameters under investigation coincide with the unknown parameters in the computer program, they are identified in the process. This technique was applied to an experimental rotor system constructed such that the parameters under investigation, the direct and quadrature dynamic stiffness components for a plain oil-lubricated journal bearing operating at low eccentricity, could be determined by both this technique and conventional unbalance force testing. The results of the nonsynchronous tests are presented in the paper.


2014 ◽  
Vol 580-583 ◽  
pp. 1940-1945
Author(s):  
Qiao Yan ◽  
Zhan Hong Gao ◽  
Zhi Cheng Song

Sensitivity analysis of model parameters is a rock fill parametric inversion analysis method to determine the unknown parameters. Traditional sensitivity analysis is basically a lot of trial or the method of single factor analysis based on a large amount of calculation, but, unable to reflect the real situation. The method of particle swarm optimization based on neural network based nonlinear mapping relationship between model parameters and displacement to finite element simulation of dam deformation. Basing on the orthogonal design, the methods of range analysis and variance analysis method were used for sensitivity analysis of the parameters of Duncan E-B model and the impact of various parameters on the dam displacement, and then it can be as the parameters of rock fill dam provide basis for determining the unknown parameters inversion.


Author(s):  
S T Chen ◽  
A C Lee

The paper investigates the control problem for a flexible rotor system with symmetric mass and stiffness properties and proposes an internal and external decoupling control scheme to simplify the controller design for such a system, where the existence of gyroscopic effects during rotation is neglected. The whole flexible rotor system can eventually be separated into four flexible subsystems without knowledge of the system parameters, and the control algorithm for each subsystem can be designed and implemented independently. Simulation results demonstrate the effectiveness of using the proposed scheme in conjunction with the optimal modal space control scheme.


2019 ◽  
Vol 2019 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jérémie Gerhardt ◽  
Michael E. Miller ◽  
Hyunjin Yoo ◽  
Tara Akhavan

In this paper we discuss a model to estimate the power consumption and lifetime (LT) of an OLED display based on its pixel value and the brightness setting of the screen (scbr). This model is used to illustrate the effect of OLED aging on display color characteristics. Model parameters are based on power consumption measurement of a given display for a number of pixel and scbr combinations. OLED LT is often given for the most stressful display operating situation, i.e. white image at maximum scbr, but having the ability to predict the LT for other configurations can be meaningful to estimate the impact and quality of new image processing algorithms. After explaining our model we present a use case to illustrate how we use it to evaluate the impact of an image processing algorithm for brightness adaptation.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4566
Author(s):  
Dominik Prochniewicz ◽  
Kinga Wezka ◽  
Joanna Kozuchowska

The stochastic model, together with the functional model, form the mathematical model of observation that enables the estimation of the unknown parameters. In Global Navigation Satellite Systems (GNSS), the stochastic model is an especially important element as it affects not only the accuracy of the positioning model solution, but also the reliability of the carrier-phase ambiguity resolution (AR). In this paper, we study in detail the stochastic modeling problem for Multi-GNSS positioning models, for which the standard approach used so far was to adopt stochastic parameters from the Global Positioning System (GPS). The aim of this work is to develop an individual, empirical stochastic model for each signal and each satellite block for GPS, GLONASS, Galileo and BeiDou systems. The realistic stochastic model is created in the form of a fully populated variance-covariance (VC) matrix that takes into account, in addition to the Carrier-to-Noise density Ratio (C/N0)-dependent variance function, also the cross- and time-correlations between the observations. The weekly measurements from a zero-length and very short baseline are utilized to derive stochastic parameters. The impact on the AR and solution accuracy is analyzed for different positioning scenarios using the modified Kalman Filter. Comparing the positioning results obtained for the created model with respect to the results for the standard elevation-dependent model allows to conclude that the individual empirical stochastic model increases the accuracy of positioning solution and the efficiency of AR. The optimal solution is achieved for four-system Multi-GNSS solution using fully populated empirical model individual for satellite blocks, which provides a 2% increase in the effectiveness of the AR (up to 100%), an increase in the number of solutions with errors below 5 mm by 37% and a reduction in the maximum error by 6 mm compared to the Multi-GNSS solution using the elevation-dependent model with neglected measurements correlations.


Sign in / Sign up

Export Citation Format

Share Document