Modeling and Analysis of a CNG Residential Refueling System

Author(s):  
Hyo Joon Bang ◽  
Stephanie Stockar ◽  
Matteo Muratori ◽  
Giorgio Rizzoni

Natural gas has recently been proposed as an alternative fuel for transportation in the United States. Refueling infrastructure is the major technological barrier to the market penetration of passenger compressed natural gas (CNG) vehicles. Currently, there is about one natural gas refueling station every 150 gasoline pumps. Nevertheless, natural gas is widely available in American houses, and thus distributed residential refueling is seen as a viable solution. Generally, residential CNG refueling systems use compressors driven by electric motors. With a potential increase in the number of residential natural gas refueling systems over the next few years, the additional load that this system will introduce on the electric power infrastructure can be significant. In this paper, a system dynamic model of a residential refueling system has been developed and validated against data available in the literature. Ultimately, the model will allow for exploring the impact of residential refueling of CNG vehicles on the electric power infrastructure.

2019 ◽  
Vol 9 (21) ◽  
pp. 4610 ◽  
Author(s):  
Dario Di Maio ◽  
Carlo Beatrice ◽  
Valentina Fraioli ◽  
Pierpaolo Napolitano ◽  
Stefano Golini ◽  
...  

The main objective of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical in real-world driving operating conditions, as fuel cutoff phases or engine misfire, on the aftertreatment devices, which are generally very sensitive to these changes. This phenomenon is particularly evident when dealing with engines powered by natural gas, which requires the use of a three-way catalyst (TWC). Indeed, some deviations from the stoichiometric lambda value can interfere with the catalytic converter efficiency. In this work, a numerical “quasi-steady” model was developed to simulate the chemical and transport phenomena of a specific TWC for a compressed natural gas (CNG) heavy-duty engine. A dedicated experimental campaign was performed in order to evaluate the catalyst response to a defined λ variation pattern of the engine exhaust stream, thus providing the data necessary for the numerical model validation. Tests were carried out to reproduce oxygen storage phenomena that make catalyst behavior different from the classic steady-state operating conditions. A surface reaction kinetic mechanism concerning CH4, CO, H2, oxidation and NO reduction has been appropriately calibrated at different λ values with a step-by-step procedure, both in steady-state conditions of the engine work plan and during transient conditions, through cyclical and consecutive transitions of variable frequency between rich and lean phases. The activity also includes a proper calibration of the reactions involving cerium inside the catalyst in order to reproduce oxygen storage and release dynamics. Sensitivity analysis and continuous control of the reaction rate allowed evaluating the impact of each of them on the exhaust composition in several operating conditions. The proposed model predicts tailpipe conversion/formation of the main chemical species, starting from experimental engine-out data, and provides a useful tool to evaluate the catalyst’s performance.


Subject Nicosia’s decision to revoke the citizenship of 26 foreign nationals. Significance Cyprus has tightened up its Citizenship by Investment Programme (CIP) with regard to certain controversial individuals out of a desire to strengthen relations with the United States and EU. This is particularly important given Turkish efforts to prevent Cyprus exploring for natural gas in its waters. Impacts According to a finance ministry study, CIP made a positive but relatively small contribution to GDP during 2013-18. The construction sector benefited in particular, with employment rising by about 8%. The effect on property prices seems largely to have been confined to Limassol. The impact on Cypriot banking amounted largely to stabilising the sector and providing a new source of finance during the banking crisis.


2013 ◽  
Vol 315 ◽  
pp. 552-556 ◽  
Author(s):  
Shahrul Azmir Osman ◽  
Ahmad Jais Alimin ◽  
V.S. Liong

The use of natural gas as an alternative fuels are motivated from the impact in deteriorating quality of air and the energy shortage from petroleum products. Through retrofitting, CI engine runs on CNG, will be able to reduce the negative impact mainly on the use of petroleum products. However, this required the modification of the combustion chamber geometry by reducing the compression ratio to value that suits combustion of CNG. In this present studies, four different shapes and geometries of combustion chamber were designed and simulate using CFD package powered by Ansys workbench, where k-ε turbulence model was used to predict the flow in the combustion chamber. The results of turbulence kinetic energy, velocity vectors and streamline are presented. The enhancement of air-fuel mixing inside the engine cylinder can be observed, where the design with re-entrance and lower center projection provide better results compared to other combustion geometries designs.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5192
Author(s):  
Andrew Speake ◽  
Paul Donohoo-Vallett ◽  
Eric Wilson ◽  
Emily Chen ◽  
Craig Christensen

In regions where natural gas is used for both power generation and heating buildings, extreme cold weather events can place the electrical system under enormous stress and challenge the ability to meet residential heating and electric demands. Residential demand response has long been used in the power sector to curtail summer electric load, but these types of programs in general have not seen adoption in the natural gas sector during winter months. Natural gas demand response (NG-DR) has garnered interest given recent extreme cold weather events in the United States; however, the magnitude of savings and potential impacts—to occupants and energy markets—are not well understood. We present a case-study analysis of the technical potential for residential natural gas demand response in the northeast United States that utilizes diverse whole-building energy simulations and high-performance computing. Our results show that NG-DR applied to residential heating systems during extreme cold-weather conditions could reduce natural gas demand by 1–29% based on conservative and aggressive strategies, respectively. This indicates a potential to improve the resilience of gas and electric systems during stressful events, which we examine by estimating the impact on energy costs and electricity generation from natural gas. We also explore relationships between hourly indoor temperatures, demand response, and building envelope efficiency.


Author(s):  
Boxiao Chen ◽  
Xiuli Chao ◽  
Yan Fu ◽  
Margaret Strumolo ◽  
Michael A. Tamor

Both automakers and electricity generators are facing increasingly more stringent greenhouse gas (GHG) emission targets. With the introduction of plug-in hybrid and electric vehicles, the transportation and electricity generation sectors become connected. This provides an opportunity for both sectors to work jointly to achieve cost efficient reduction of CO2 emissions. Due to the low cost and low carbon content of natural gas (NG), NG enabled vehicles are drawing increasing attention. With GHG targets rapidly decreasing, how to judiciously choose among plug-in hybrid vehicles, electric vehicles, NG-enabled vehicles, and gasoline vehicles to save societal cost is worth serious consideration. On the other hand, gasoline and NG prices play an important role in this decision-making process. In order to estimate the impact of gasoline and NG prices and quantify the benefit of the collaboration between automakers and electricity generators, an optimization model is developed to evaluate the total societal cost and CO2 emissions for both sectors. Various scenario analyses are conducted to understand the cost and capacity planning differences when gasoline and NG prices vary while the two sectors can work jointly or independently to meet the CO2 emission constraints. These results help us understand the impact of gasoline and NG prices in achieving GHG reduction targets for the two major sectors of CO2 emissions in the United States.


2019 ◽  
Vol 116 ◽  
pp. 00072 ◽  
Author(s):  
Fabio Schiro ◽  
Anna Stoppato ◽  
Alberto Benato

Nowadays, decarbonization of energy economy is a topical theme and several pathways are under discussion. Gaseous fuels will play a primary role during this transition, and the production of renewable or low carbon-impact gaseous fuels is necessary to deal with this challenge. Decarbonization will be sustained by an increasing share of renewables, which production intermittency can be critical for the energy system. Renewable hydrogen generation is a viable solution since this energy vector can be produced from electricity with a fast response and injected in the existing natural gas infrastructures, granting storage capacity and easy transport. Parallelly to the renewable-based energy production, fossil-based energy can be exploited with a low carbon impact, using methane from reservoirs to produce hydrogen capturing CO2. The mentioned scenarios will lead to hydrogen enrichment of natural gas, which impact on the infrastructures is being actively studied. The effect on end-user devices, instead, is poorly analysed, but is fundamental to be assessed. This paper highlights the impact on the widely used premixed condensing boilers, which will be fired with hydrogen enriched natural gas in the near future, and the changes required to components.


Author(s):  
Mario Maiorino ◽  
Stephanie Stockar ◽  
Marco Sorrentino ◽  
Giorgio Rizzoni

Personal transportation has a significant impact on the residential electric energy usage due to the interaction of alternative fueled vehicles with the electric grid. This phenomenon is projected to grow significantly, as several studies confirm that the market penetration of alternative fueled vehicles will steadily increase in the future. This paper presents a control-oriented model that predicts the daily residential power demand considering multiple energy carriers and different types of alternative fueled vehicles for personal transportation. The model has been used to perform an energy analysis on a large sample of homes with the objective of evaluating the impact of personal transportation on the residential electric power demand. Two penetration levels are considered in the study and the results are evaluated based on several metrics.


2017 ◽  
Vol 36 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Weidong Li ◽  
Ping Xiang ◽  
Yung-Ju Chen ◽  
Xiuye Xie ◽  
Yilin Li

Purpose:The purposes of this study were to: (a) examine the impact of the Silverman and Solmon article (1998) on how researchers handle the unit of analysis issue in their field-based intervention research in physical education in the United States and summarize statistical approaches that have been used to analyze the data, and (b) provide recommendations for future field-based intervention research and related statistical analysis.Methods:We identified and coded 50 peer-reviewed, field-based intervention research articles with a coding template, published in Journal of Teaching in Physical Education and Research Quarterly for Exercise and Sport from 1998 to January 2016.Results:Our findings showed that 60% of the articles disregarded the unit of analysis and 80% of the articles applied the interventions to classes/groups, but used individual students as unit of analysis. Eight statistical modeling and analysis approaches were used to address the unit of analysis issue.Discussion:These findings provide first empirical evidence that the Silverman and Solmon 1998 article had limited impact on how researchers handle unit of analysis in their field-based intervention research in physical education. This suggests that the issue of unit of analysis remains largely unsolved. To address this problem, two experimental designs and corresponding statistical analysis methods were recommended.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8001
Author(s):  
Mirosław Karczewski ◽  
Marcin Wieczorek

Problems such as global warming and rising oil prices are driving the implementation of ideas to reduce liquid fuel consumption and greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties that allow the reduction of CO2 (Carbon Dioxide) emissions during combustion. Solutions are being implemented that allow for the use of natural gas to means of transport, namely in trucks of various categories and intended use. These installations are used in new vehicles, but also in the form of conversion for used cars, usually several years old. The article presents the results of tests of an engine from a used semi-trailer truck with a mileage of approx. 800 thousand km, with the compressed natural gas supply system installed. This installation (hardware and software), depending on the engine operating conditions, enables the replacement of up to 80% of diesel (base fuel) with natural gas. The impact of changing the fuel supply method on the traction characteristics calculated with the use of external characteristics of both conventional and dual-fuel mode was assessed. The emissions of exhaust gas components were also determined under the conditions of the UNECE Regulation No. 49. The test results confirm that compared to conventional fueling, dual fueling allows for a significant reduction in CO2 emissions, even in a used vehicle with high mileage. The use of a non-factory installation did not significantly affect the traction properties of the vehicle, and engine wear is of greater importance in this case (comparison with factory data). The work is a valuable supplement to the results of the research in which the impact of the use of a non-factory CNG (Compressed Natural Gas) supply system on the performance of a semi-trailer truck unit equipped with such an installation was assessed compared to a semi-trailer truck unit powered in a classic way with diesel fuel.


Author(s):  
Michael David Costarell ◽  
Darrell Wallace

Despite significant research and development during the past quarter century, there has been an insignificant transition to use of compressed natural gas (CNG) vehicles. Although CNG automobiles reduce harmful emissions and reduce consumption of foreign oil, the nation has not successfully transitioned away from gasoline and diesel fuels. Therefore, the pros and cons of owning and operating CNG vehicles are explored from the consumer’s perspective. Included in this paper are isentropic compression models for single stage, 4 stage isentropic, and 4 stage with a constant temperature increase between cylinders. The models are then used to predict charging times for both residential and industrial compressors for an energy basis of 1MMBtu (1.055 GJ). The impact of CNG vehicles on US air emissions is discussed, with qualitative comparisons of CNG and oil-based emissions.


Sign in / Sign up

Export Citation Format

Share Document