scholarly journals Modeling of Three-Way Catalyst Dynamics for a Compressed Natural Gas Engine during Lean–Rich Transitions

2019 ◽  
Vol 9 (21) ◽  
pp. 4610 ◽  
Author(s):  
Dario Di Maio ◽  
Carlo Beatrice ◽  
Valentina Fraioli ◽  
Pierpaolo Napolitano ◽  
Stefano Golini ◽  
...  

The main objective of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical in real-world driving operating conditions, as fuel cutoff phases or engine misfire, on the aftertreatment devices, which are generally very sensitive to these changes. This phenomenon is particularly evident when dealing with engines powered by natural gas, which requires the use of a three-way catalyst (TWC). Indeed, some deviations from the stoichiometric lambda value can interfere with the catalytic converter efficiency. In this work, a numerical “quasi-steady” model was developed to simulate the chemical and transport phenomena of a specific TWC for a compressed natural gas (CNG) heavy-duty engine. A dedicated experimental campaign was performed in order to evaluate the catalyst response to a defined λ variation pattern of the engine exhaust stream, thus providing the data necessary for the numerical model validation. Tests were carried out to reproduce oxygen storage phenomena that make catalyst behavior different from the classic steady-state operating conditions. A surface reaction kinetic mechanism concerning CH4, CO, H2, oxidation and NO reduction has been appropriately calibrated at different λ values with a step-by-step procedure, both in steady-state conditions of the engine work plan and during transient conditions, through cyclical and consecutive transitions of variable frequency between rich and lean phases. The activity also includes a proper calibration of the reactions involving cerium inside the catalyst in order to reproduce oxygen storage and release dynamics. Sensitivity analysis and continuous control of the reaction rate allowed evaluating the impact of each of them on the exhaust composition in several operating conditions. The proposed model predicts tailpipe conversion/formation of the main chemical species, starting from experimental engine-out data, and provides a useful tool to evaluate the catalyst’s performance.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8001
Author(s):  
Mirosław Karczewski ◽  
Marcin Wieczorek

Problems such as global warming and rising oil prices are driving the implementation of ideas to reduce liquid fuel consumption and greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties that allow the reduction of CO2 (Carbon Dioxide) emissions during combustion. Solutions are being implemented that allow for the use of natural gas to means of transport, namely in trucks of various categories and intended use. These installations are used in new vehicles, but also in the form of conversion for used cars, usually several years old. The article presents the results of tests of an engine from a used semi-trailer truck with a mileage of approx. 800 thousand km, with the compressed natural gas supply system installed. This installation (hardware and software), depending on the engine operating conditions, enables the replacement of up to 80% of diesel (base fuel) with natural gas. The impact of changing the fuel supply method on the traction characteristics calculated with the use of external characteristics of both conventional and dual-fuel mode was assessed. The emissions of exhaust gas components were also determined under the conditions of the UNECE Regulation No. 49. The test results confirm that compared to conventional fueling, dual fueling allows for a significant reduction in CO2 emissions, even in a used vehicle with high mileage. The use of a non-factory installation did not significantly affect the traction properties of the vehicle, and engine wear is of greater importance in this case (comparison with factory data). The work is a valuable supplement to the results of the research in which the impact of the use of a non-factory CNG (Compressed Natural Gas) supply system on the performance of a semi-trailer truck unit equipped with such an installation was assessed compared to a semi-trailer truck unit powered in a classic way with diesel fuel.


Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou ◽  
Li Jiang ◽  
Jeffrey Sterniak

Highly diluted, low temperature homogeneous charge compression ignition (HCCI) combustion leads to ultra-low levels of engine-out NOx emissions. A standard drive cycle, however, would require switches between HCCI and spark-ignited (SI) combustion modes. In this paper a methodology is introduced, investigating the fuel economy of such a multimode combustion concept in combination with a three-way catalytic converter (TWC). The TWC needs to exhibit unoccupied oxygen storage sites in order to show acceptable performance. But the lean exhaust gas during HCCI operation fills the oxygen storage and leads to a drop in NOx conversion efficiency. Eventually the levels of NOx become unacceptable and a mode switch to a fuel rich combustion mode is necessary in order to deplete the oxygen storage. The resulting lean-rich cycling leads to a penalty in fuel economy. In order to evaluate the impact of those penalties on fuel economy, a finite state model for combustion mode switches is combined with a longitudinal vehicle model and a phenomenological TWC model, focused on oxygen storage. The aftertreatment model is calibrated using combustion mode switch experiments from lean HCCI to rich spark-assisted HCCI and back. Fuel and emissions maps acquired in steady state experiments are used. Two depletion strategies are compared in terms of their influence on drive cycle fuel economy and NOx emissions.


Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 40366-40370 ◽  
Author(s):  
Jianjun Chen ◽  
Fujin Huang ◽  
Wei Hu ◽  
Guangxia Li ◽  
Lin Zhong ◽  
...  

A new Pt-based three-way catalyst (TWC) for compressed natural gas (CNG) exhausts emissions was developed using a double-solvent method.


Author(s):  
Tariq Shamim

This paper presents a computational investigation of the effect of exhaust temperature modulations on an automotive catalytic converter. The objective is to develop a better fundamental understanding of the converter’s performance under transient driving conditions. Such an understanding will be beneficial in devising improved emission control methodologies. The study employs a single-channel based, one-dimensional, non-adiabatic model. The transient conditions are imposed by varying the exhaust gas temperature sinusoidally. The results show that temperature modulations cause a significant departure in the catalyst behavior from its steady behavior, and modulations have both favorable and harmful effects on pollutant conversion. The operating conditions and the modulating gas composition and flow rates (space velocity) have substantial influence on catalyst behavior.


Author(s):  
Hyo Joon Bang ◽  
Stephanie Stockar ◽  
Matteo Muratori ◽  
Giorgio Rizzoni

Natural gas has recently been proposed as an alternative fuel for transportation in the United States. Refueling infrastructure is the major technological barrier to the market penetration of passenger compressed natural gas (CNG) vehicles. Currently, there is about one natural gas refueling station every 150 gasoline pumps. Nevertheless, natural gas is widely available in American houses, and thus distributed residential refueling is seen as a viable solution. Generally, residential CNG refueling systems use compressors driven by electric motors. With a potential increase in the number of residential natural gas refueling systems over the next few years, the additional load that this system will introduce on the electric power infrastructure can be significant. In this paper, a system dynamic model of a residential refueling system has been developed and validated against data available in the literature. Ultimately, the model will allow for exploring the impact of residential refueling of CNG vehicles on the electric power infrastructure.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Maxian B. Seales ◽  
Turgay Ertekin ◽  
John Yilin Wang

At the end of 2015 the U.S. held 5.6% or approximately 369 Tcf of worldwide conventional natural gas proved reserves (British Petroleum Company, 2016, “BP Statistical Review of World Energy June 2016,” British Petroleum Co., London). If unconventional gas sources are considered, natural gas reserves rise steeply to 2276 Tcf. Shale gas alone accounts for approximately 750 Tcf of the technically recoverable gas reserves in the U.S. (U.S. Energy Information Administration, 2011, “Review of Emerging Resources: U.S. Shale Gas and Shale Oil plays,” U.S. Department of Energy, Washington, DC). However, this represents only a very small fraction of the gas associated with shale formations and is indicative of current technological limits. This manuscript addresses the question of recovery efficiency/recovery factor (RF) in fractured gas shales. Predictions of gas RF in fractured shale gas reservoirs are presented as a function of operating conditions, non-Darcy flow, gas slippage, proppant crushing, and proppant diagenesis. Recovery factors are simulated using a fully implicit, three-dimensional, two-phase, dual-porosity finite difference model that was developed specifically for this purpose. The results presented in this article provide clear insight into the range of recovery factors one can expect from a fractured shale gas formation, the impact that operation procedures and other phenomena have on these recovery factors, and the efficiency or inefficiency of contemporary shale gas production technology.


Author(s):  
S. M. Suleiman ◽  
Y. G. Li

Natural gas pipeline plays an important role in transporting natural gas over a long distance. Its performance and operating behavior are affected by many factors, such as ambient conditions, natural gas flow rate, operation and control of compressor pumping stations, etc. Better understanding of the performance and behavior of an integrated pipeline-compressor system used for gas transmission will be beneficial to both design and operation of natural gas pipelines. This paper introduces a novel steady-state thermodynamic performance simulation approach for natural gas pipelines based on fundamental thermodynamics with the inclusion of the coupling between a pipeline and compressor pumping stations. A pipeline resistance model, a compressor performance model characterized by an empirical compressor map and a pipeline control schedule for the operation of an integrated pipeline-compressor system are included in the simulation approach. The novel approach presented in this paper allows the analysis of the thermodynamic coupling between compressors and pipes and the off-design performance analysis of the integrated pipeline-compressor system. The introduced simulation approach has been applied to the performance simulation of a typical model pipeline driven by multiple centrifugal compressor pumping stations. It is assumed in the pipeline control schedule that the total pressure at the inlet of compressor stations is kept constant when pipeline operating condition changes. Such pipeline operating conditions include varying ambient temperature and varying natural gas volumetric flow rate. The performance behavior of the pipeline corresponding to the change of operating conditions has been successfully simulated. The introduced pipeline performance simulation approach is generic and can be applied to different pipeline-compressor systems.


2013 ◽  
Vol 315 ◽  
pp. 552-556 ◽  
Author(s):  
Shahrul Azmir Osman ◽  
Ahmad Jais Alimin ◽  
V.S. Liong

The use of natural gas as an alternative fuels are motivated from the impact in deteriorating quality of air and the energy shortage from petroleum products. Through retrofitting, CI engine runs on CNG, will be able to reduce the negative impact mainly on the use of petroleum products. However, this required the modification of the combustion chamber geometry by reducing the compression ratio to value that suits combustion of CNG. In this present studies, four different shapes and geometries of combustion chamber were designed and simulate using CFD package powered by Ansys workbench, where k-ε turbulence model was used to predict the flow in the combustion chamber. The results of turbulence kinetic energy, velocity vectors and streamline are presented. The enhancement of air-fuel mixing inside the engine cylinder can be observed, where the design with re-entrance and lower center projection provide better results compared to other combustion geometries designs.


Author(s):  
M I Soumelidis ◽  
R K Stobart ◽  
R A Jackson

Chemical activity inside a three-way catalytic converter (TWC) is highly complex and usually is not taken into account when developing TWC control-oriented models. Such models still remain to a large extent empirical and do not perform satisfactorily under a wider range of operating conditions. This work demonstrates how a very simple model, based on the basic chemical processes that take place inside the catalytic converter, can successfully capture a large part of the strongly non-linear TWC dynamic behaviour. The proposed model is based on the reactions of ceria oxidation and carbon monoxide oxidation, which appear to dominate the fast dynamics of oxygen storage and release respectively. In addition, the water-gas shift reaction is incorporated into the model, which is responsible for the slower dynamic response of the catalyst under rich operating conditions. With some mild assumptions, a discrete-time version of the model was implemented in MATLAB. The model is sufficiently simple in structure for in-vehicle use and can be used for control and on-board diagnostic purposes.


Sign in / Sign up

Export Citation Format

Share Document