Prediction of Inlet Distortion Induced Axial Compressor Flow Field Instability in Mid-Air Refueling

Author(s):  
Ningyu Liu ◽  
Eddie Yin-Kwee Ng ◽  
Hong Ngiap Lim ◽  
Tock Lip Tan

The propagation of strong distortion at inlet of an axial compressor is investigated by applying the critical distortion line and the integral method. The practical applications, such as flaming of leakage fuel during mid-air refueling process, are implemented to show the details of the numerical methodology used in analysis of the axial flow compressor behavior and the propagation of inlet distortion. From the viewpoint of compressor efficiency, the propagation of inlet flow distortion is further described by a compressor critical performance and its critical characteristic. The simulated results present a useful physical insight to the significant effects of inlet parameters on the distortion extension, velocity, and compressor characteristics. The distortion level, the size of distortion area, and the incidence angle at compressor inlet, and the rotor blade speed are found to be the major parameters affecting the mass flow rate of engine.

Author(s):  
Eddie Yin-Kwee Ng ◽  
Ningyu Liu ◽  
Hong Ngiap Lim ◽  
Tock Lip Tan

The effects of the parameters of inlet distortions on the trend of downstream flow feature in axial compressor are simulated using an integral method. Other than the ratio of drag-to-lift coefficients of the blade and the angle of incidence, the value of distorted inlet velocity is found to be another essential parameter to control the distortion propagation. With this in mind, a distortion propagation line and corresponding distortion propagation factor are proposed to express the effect of the two main inlet parameters: the angle of incidence and the distorted inlet velocity, on the propagation of distortion. From the viewpoint of compressor efficiency, the distortion propagation is further described by a compressor critical performance. The results provide a physical insight of compressor axial behavior and asymptotic behavior of the propagation of inlet distortion, and confirm the active role of compressor in determining the velocity distribution when compressor responds to an intake flow distortion.


2005 ◽  
Vol 2005 (2) ◽  
pp. 117-127
Author(s):  
Eddie Yin-Kwee Ng ◽  
Ningyu Liu ◽  
Hong Ngiap Lim ◽  
Daniel Tan

An improved integral method is proposed and developed for the quantitative prediction of distorted inlet flow propagation through axial compressor. The novel integral method is formulated using more appropriate and practical airfoil characteristics, with less assumptions needed for derivation. The results indicate that the original integral method (Kim et al., 1996) underestimated the propagation of inlet flow distortion. The effects of inlet flow parameters on the propagation of inlet distortions as well as on the compressor performance and characteristic are simulated and analyzed. From the viewpoint of compressor efficiency, the propagation of inlet flow distortion is further described using a compressor critical performance and its associated critical characteristic. The results present a realistic physical insight to an axial-flow compressor behavior with a propagation of inlet distortion.


Author(s):  
J. Zhang ◽  
F. Lin ◽  
J. Chen ◽  
C. Nie

The stalling behavior in a single-stage low-speed axial compressor under inlet distortion is investigated. A blade-passage-scale flow mechanism is proposed to explain the stability deterioration caused by inlet distortion for the tested compressor exhibiting spike stall inception. In contrast to the existing understanding of inlet distortion based on system scale dynamics, the main elements of this flow mechanism are the unsteady behavior of tip leakage vortices (TLV) under inlet distortion; its effect on the initiation of spike flow disturbances, and its interaction with distorted sectors. Rotating inlet distortion (RID) is used as a tool because RID makes it possible to directly compare the flows between distorted and clean flow sectors with fixed measurement stations on the casing, and the fact that the stationary inlet distortion is only a special case of RID makes the results generic. The tests demonstrate that the blade loading in the distorted sector is heavier than that in the non-distorted sector, causing the TLV in the distorted sector move closer to the leading edge of the rotor blade and thus be the first to initiate the spike-like disturbance. The unsteady CFD simulation further confirms that such a disturbance corresponds to a vortex spinning out of the leading edge of the blades. However, the initiation of this spike-like disturbance doesn’t necessarily trigger the full stall immediately. The tracking of the disturbances indicates that most of such spike-like disturbances will be smeared by non-distorted sector and the growth of the spike-like disturbances actually relate closely to how and how often the path of the propagating disturbances come across the path of the rotating distorted sector. The proposed blade-passage-scale flow mechanism also offers an alternative explanation to the “resonance” phenomenon in rotating inlet distortion research, which was explained with excitation-and-response theory for compressors that exhibit modal stall inception.


1987 ◽  
Vol 109 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Y. Dong ◽  
S. J. Gallimore ◽  
H. P. Hodson

Measurements have been performed in a low-speed high-reaction single-stage axial compressor. Data obtained within and downstream of the rotor, when correlated with the results of other investigations, provide a link between the existence of suction surface–hub corner separations, their associated loss mechanisms, and blade loading. Within the stator, it has been shown that introducing a small clearance between the stator blade and the stationary hub increases the efficiency of the stator compared to the case with no clearance. Oil flow visualizaton indicated that the leakage reduced the extensive suction surface–hub corner separation that would otherwise exist. A tracer gas experiment showed that the large radial shifts of the surface streamlines indicated by the oil flow technique were only present close to the blade. The investigation demonstrates the possible advantages of including hub clearance in axial flow compressor stator blade rows.


Author(s):  
Justin (Jongsik) Oh

In many aerodynamic design parameters for the axial-flow compressor, three variables of tailored blading, blade lean and sweep were considered in the re-design efforts of a transonic single stage which had been designed in 1960’s NASA public domains. As Part 1, the re-design was limited to the stator vane only. For the original MCA (Multiple Circular Arc) blading, which had been applied at all radii, the CDA (Controlled Diffusion Airfoil) blading was introduced at midspan as the first variant, and the endwalls of hub and casing (or tip) were replaced with the DCA (Double Circular Arc) blading for the second variant. Aerodynamic performance was predicted through a series of CFD analysis at design speed, and the best aerodynamic improvement, in terms of pressure ratio/efficiency and operability, was found in the first variant of tailored blading. It was selected as a baseline for the next design efforts with blade lean, sweep and both combined. Among 12 variants, a case of positively and mildly leaned blades was found the most attractive one, relative to the original design, providing benefits of an 1.0% increase of pressure ratio at design flow, an 1.7% increase of efficiency at design flow, a 10.5% increase of the surge margin and a 32.3% increase of the choke margin.


Author(s):  
Wu Dong-run ◽  
Teng Jin-fang ◽  
Qiang Xiao-qing ◽  
Feng Jin-zhang

This paper applies a new analytical/empirical method to formulate the off-design deviation angle correlation of axial flow compressor blade elements. An implicit function of deviation angle is used to map off-design deviation curves into linear correlations (minimum linear correlation coefficient R = 0.959 in this paper). Solution of the coefficients in the correlation is given through the study of classical theories and statistical analysis of the experimental data. The off-design deviation angle can be calculated numerically. The approach requires only knowledge of the blade element geometry. The comparison among 2 classical correlations and the new correlation proposed in this paper shows the new correlation has minimum error over the entire range of incidence angle while classical correlations show high reliability only in a limited range. Experimental data in this paper is collected from NASA’s open technical reports. Rotors and stators are studied together. Considering there is significant deviation angle variation along spanwise direction, only data at 50% span is studied, if possible. The error among experimental data, statistical regressions of the experimental data, and numerical results based on the new correlation is discussed. It has to be noted that the influence of the flow condition other than incidence angle is only being discussed but with less break through.


Author(s):  
R. C. Reisweber

In development of an axial-flow boiler supercharger, a test program on the compressor inlet was carried out. Tests were run using a test compressor aerodynamically identical to the first three stages of the supercharger compressor. Prototype compressor inlet was compared to an axial inlet, and also to several modified inlets. While the prototype inlet showed considerably more distortion ahead of the inlet guide vanes than the axial inlet, the inlet guide vanes removed most of the distortion. As a result, overall performance of all inlet configurations was essentially the same.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


1985 ◽  
Vol 107 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Pan-Ming Lu¨ ◽  
Chung-Hua Wu

A set of conservative full potential function equations governing the fluid flow along a given S2 streamsurface in a transonic axial compressor rotor was obtained. By the use of artificial density and a potential function/density iteration, this set of equations can be solved, and the passage shock on the S2 streamsurface can be captured. A computer program for this analysis problem has been developed and used to compute the flow field along a mean S2 streamsurface in the DFVLR transonic axial compressor rotor. A comparison of computed results with DFVLR L2F measurement at 100 percent design speed shows fairly good agreement.


Sign in / Sign up

Export Citation Format

Share Document