An Experimental Investigation of the Effects of Vaneless Diffuser Geometry on the Stall Characteristics

2009 ◽  
Author(s):  
Saad A. Ahmed ◽  
Mohamed Gadalla

An experimental investigation of the flow instability characteristics in a radial vaneless diffuser of a centrifugal blower was carried out. The mass flow rate of air through the diffuser could be gradually reduced to zero value. The flowfield in the diffuser was measured using dynamic and static pressure transducers and the results are reported for steady and stall conditions. The objectives of this experimental investigation are to investigate, understand, and document the effects of diffuser geometry on the inception and fundamental characteristics of rotating stall, and also to provide a benchmark set of experimental data to aid stall model development. The results of this investigation showed that the maximum number of stall cells was two. The rotating pressure pattern with one stall cell was dominant; especially, if the mass flow rate is lower than the critical value for stall inception. The speeds of stall cells increase linearly with the impeller speed and they decrease with the increase of the diameter ratio. On the other hand, the effect of diffuser width ratio on the pressure pattern frequency is insignificant; therefore, it is not presented.

1988 ◽  
Author(s):  
M. V. Otugen ◽  
R. M. C. So ◽  
B. C. Hwang

Experiments were carried out in a model vaneless diffuser rig to investigate the rotating stall phenomenon and its relation to diffuser geometry. The experimental rig consisted of an actual impeller which was used to deliver the flow to the vaneless diffuser. Mass flow rate through the system could be adjusted by varying the rotational speed of the impeller at a fixed inlet opening or by changing the inlet opening at a fixed impeller speed. The flow exited to room condition. As such, the rig was designed to investigate the fluid mechanics of vaneless diffuser rotating stall only. Attention was focused on the effects of diffuser width and radius on rotating stall. Three diffuser widths and three outlet radii were examined. The width-to-inlet radius ratio varied between 0.09 and 0.142 while the outlet-to-inlet radius ratio varied between 1.5 and 2. Results showed that the critical mass flow rate for the onset of rotating stall decreases with decreasing diffuser width. The critical mass flow rate is affected also by the diffuser radius ratio; larger radius ratios resulted in smaller critical mass flow rates. The ratio of the speed of rotation of the stall cell to impeller speed is found to decrease with increasing number of stall cells. This relative speed also decreases with increasing diffuser radius ratio, but it is largely independent of the diffuser width.


2008 ◽  
Author(s):  
Saad A. Ahmed

The operation of centrifugal compressor systems is limited at low-mass flow rates by fluid flow instabilities leading to rotating stall or surge. These instabilities limit the flow range in which the compressor can operate. They also lower the performance and efficiency of the compressor. Experiments were conducted to investigate a model of radial vaneless diffuser at stall as well as stall-free operating conditions. The speed of the impeller was kept constant at 2000 RPM, while the mass flow rate was reduced gradually to scan the steady and unsteady operating conditions of the compressor. The flow rate through the compressor was gradually decreased until flow instability is initiated at the diffuser. The flow rate was further reduced to study the characteristics of rotating stall. These measurements were reported for diffuser diameter ratios, Do/Di, of 2.0 with diffuser width ratio, b/Di, of 0.055. At lower flow rates than the critical, the rotating stall pattern with one stall cell was dominant over the pattern with two cells. In addition, the instability in the diffuser was successfully delayed to a lower flow coefficient when rough surfaces were attached to one or both sides of the diffuser with the lowest values achieved by attaching the rough surface to the shroud. Results show that the roughness has no significant effect on stall cell characteristics.


1979 ◽  
Vol 101 (1) ◽  
pp. 52-59 ◽  
Author(s):  
A. N. Abdelhamid ◽  
W. H. Colwill ◽  
J. F. Barrows

Pressure fluctuations at various locations on the flow path of two centrifugal compressor stages have been recorded and analyzed in the time and frequency domains. Two distinct types of unsteady phenomena were measured: a rotating pressure pattern in the diffuser and compressor system surge. The rotating pressure pattern was generated at a much higher mass flow rate than the one leading to surge. At the onset of the diffuser instability, the pressure fluctuations were sinusoidal and lines of equal phase were radial. For the tests conducted in the present investigation, two nodal diameters existed in the pattern. Both amplitude and rotational speed of the pressure pattern gradually increased as the mass flow rate was gradually decreased. It is shown that the measured pressure fluctuations should not be attributed to rotating zones of separated boundary layers at the diffuser walls. This does not mean, however, that a stationary separation zone in the diffuser is not necessary to generate the measured diffuser instability.


Author(s):  
Yang Zhao ◽  
Guang Xi ◽  
Jiayi Zhao

The operating range of a centrifugal compressor is often limited by the occurrence of the flow instability, such as diffuser rotating stall or system surge. In the paper, the unsteady numerical simulations are performed on a low-speed centrifugal compressor to investigate the characteristic of the rotating stall in the vaned diffuser. And also, the developed model of lumped parameter is used to predict the system instability. The flow field in the diffuser is firstly investigated at near stall condition. It is found that the leading-edge vortex and the secondary flow induce the hub-corner separation at the suction side of the diffuser blade. When the mass flow rate is reduced gradually, the fore part of the volute turns to act as a diffuser from a nozzle. Under the influence of the asymmetry induced by the volute, the hub-corner separation firstly develops into rotating stall in the passage with the lowest mass flow rate when at critical stall point. And then the diffuser rotating stall propagates along the circumferential direction at about 7% of the impeller speed. And also, the model of lumped parameter considering the effect of rotating stall is developed to analyze the system instability of mild surge. The predicted vibration frequency is within 5.8% of the measurement and the predicted transient process in mild surge matches well with the measurement. With different volume of the compressed air, the transient compressor characteristic tends to be stabilized or oscillates in a cycle along the counter-clockwise with different magnitude.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2033
Author(s):  
Amjid Khan ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Imran Shah ◽  
Stanislaw Legutko ◽  
...  

Downsizing in engine size is pushing the automotive industry to operate compressors at low mass flow rate. However, the operation of turbocharger centrifugal compressor at low mass flow rate leads to fluid flow instabilities such as stall. To reduce flow instability, surface roughness is employed as a passive flow control method. This paper evaluates the effect of surface roughness on a turbocharger centrifugal compressor performance. A realistic validation of SRV2-O compressor stage designed and developed by German Aerospace Center (DLR) is achieved from comparison with the experimental data. In the first part, numerical simulations have been performed from stall to choke to study the overall performance variation at design conditions: 2.55 kg/s mass flow rate and rotational speed of 50,000 rpm. In second part, surface roughness of magnitude range 0–200 μm has been applied on the diffuser shroud to control flow instability. It was found that completely rough regime showed effective quantitative results in controlling stall phenomena, which results in increases of operating range from 16% to 18% and stall margin from 5.62% to 7.98%. Surface roughness as a passive flow control method to reduce flow instability in the diffuser section is the novelty of this research. Keeping in view the effects of surface roughness, it will help the turbocharger manufacturers to reduce the flow instabilities in the compressor with ease and improve the overall performance.


Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


Author(s):  
M. Fatouh

This paper reports the results of an experimental investigation on a pilot compression chiller (4 kW cooling capacity) working with R401a and R134a as R12 alternatives. Experiments are conducted on a single-stage vapor compression refrigeration system using water as a secondary working fluid through both evaporator and condenser. Influences of cooling water mass flow rate (170–1900 kg/h), cooling water inlet temperature (27–43°C) and chilled water mass flow rate (240–1150 kg/h) on performance characteristics of chillers are evaluated for R401a, R134a and R12. Increasing cooling water mass flow rate or decreasing its inlet temperature causes the operating pressures and electric input power to reduce while the cooling capacity and coefficient of performance (COP) to increase. Pressure ratio is inversely proportional while actual loads and COP are directly proportional to chilled water mass flow rate. The effect of cooling water inlet temperature, on the system performance, is more significant than the effects of cooling and chilled water mass flow rates. Comparison between R12, R134a and R401a under identical operating conditions revealed that R401a can be used as a drop-in refrigerant to replace R12 in water-cooled chillers.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


Author(s):  
Saad A. Ahmed

Centrifugal compressors or blowers are widely used in many industrial applications. However, the operation of such systems is limited at low-mass flow rates by self-excited flow instabilities which could result in rotating stall or surge of the compressor. These instabilities will limit the flow range in which the compressor or the blower can operate, and will also lower their performance and efficiency. Experimental techniques were used to investigate a model of radial vaneless diffuser at stall and stall-free operating conditions. The speed of the impeller was kept constant, while the mass flow rate was reduced gradually to study the steady and unsteady operating conditions of the compressor. Additional experiments were made to investigate the effects of reducing the exit flow area on the inception of stall. The results indicate that the instability in the diffuser was successfully delayed to a lower flow coefficient when throttle rings were attached to either one or both of the diffuser walls (i.e., to reduce the diffuser exit flow area). The results also showed that an increase of the blockage ratio improves the stability of the system (i.e., the critical mass flow rate could be reduced to 50% of its value without blockage). The results indicate that the throttle rings could be an effective method to control stall in radial diffusers.


Sign in / Sign up

Export Citation Format

Share Document