Numerical Analysis of Lateral Skirts Performance on Drag Force of a Semi-Trailer Truck

Author(s):  
M. Lateb ◽  
H. Fellouah

This work performs computational fluid dynamics (CFD) simulations using a transient URANS (unsteady Reynolds averaged Navier–Stokes) turbulence model to investigate the influence of lateral skirts — located in the lower part of a semitrailer truck — in terms of reducing the total drag force and fuel consumption savings. The total drag force values are calculated for three semi-trailer trucks speeds (i.e. 60, 70 and 100 km/h), compared, and then validated against experimental results carried out in a wind tunnel reduced model scale (1:28). The relative errors of the aerodynamic drag force parameter are assessed in order to quantify the accuracy and the reliability of the numerical modeling results with regard to the experimental results. In addition, the flow pattern around the semi-trailer truck is then investigated to determine how the induced flow field is channeled, and where the recirculating zones are modified and developed when using the additional skirt device.

2006 ◽  
Author(s):  
Manish P. Sitlani ◽  
Kendrick Aung

The aerodynamic drag characteristics of a heavy-duty truck with two configurations, a tractor and a single trailer, and a tractor and a tandem-trailer (two trailers), have been studied. The aerodynamic drag of a truck depends on geometry, frontal area and shape, and the speed of the truck. The basic geometry used in the simulation is a 1:8 scale Ground Transportation System (GTS). The effects of vehicle geometry, frontal shape, vehicle speed, and the gap size were investigated and the drag coefficients were computed. The effect of add-on devices such as aerodynamic boat-tail plates at the rear of the trailer on the aerodynamic drag of the truck has also been analyzed. In particular, the effects of the gap between tractor and trailer, and the gap between trailers on the aerodynamic drag of tractor and two trailers configuration were determined. The feasibility of Reynolds-Average Navier-Stokes (RANS) κ-ε model in the prediction of aerodynamic drag at various Reynolds numbers has also been studied. The CFD software from CD-adapco together with an expert tool, es-aero, was used for all the analyses reported in this paper. CFD simulations for tractor and single trailer configuration were performed for various Reynolds numbers. The simulation results were validated with available experimental data and good agreements were found. Validation of numerical results for tractor and single trailer with the experimental data formed the basis for analyzing tractor and double trailer configuration. The tractor and two trailers configuration for different gap sizes between the trailers at various speeds were analyzed. The results showed that closing the gaps and incorporating boat-tails at the rear of the trailer could reduce the drag by as much as 33 percent. Drag coefficient also reduced by 46 percent by introducing smooth frontal fillets in case of tractor and single trailer. The study also emphasizes flow structures around the vehicle that contribute to the total drag.


2015 ◽  
Vol 1 (8) ◽  
pp. 331
Author(s):  
Naveen Kumar Velagapudi ◽  
Lalit Narayan K. ◽  
L. N. V. Narasimha Rao ◽  
Sri Ram Y.

Now a days demand of a high speed car is increasing in which vehicle stability is of major concern. Forces like drag& lift,weight,side forces and thrust acts on a vehicle when moving on road which significantly effect the fuel consumption The drag force is produced by relative motion between air and vehicle and about 60% of total drag is produced at the rear end. Reduction of drag force at the rear end improves the fuel utilization. This work aims to reduce the drag force which improves fuel utilization and protects environment as well. In the stage of work a sedan car with different types of spoilers are used to reduce the aerodynamic drag force. The design of sedan car has been done on CATIA-2010 and the same is used for analysis in ANSYS-(fluent). The analysis is done for finding out drag and lift forces at different velocities, and spoilers. This study proposes an effective numerical model based on the computational fluid dynamics (CFD) approach to obtain the flow structure around a passenger car with a rear spoiler


2019 ◽  
Vol 7 (11) ◽  
pp. 384 ◽  
Author(s):  
Yingfei Zan ◽  
Ruinan Guo ◽  
Lihao Yuan ◽  
Zhaohui Wu

In underwater towing operations, the drag force and vertical offset angle of towropes are important considerations when choosing and setting up towing equipment. The aim of this paper is to study the variation in drag force, vertical offset angle, resistance, and attitude for towing operations with a view to optimizing these operations. An underwater experiment was conducted using a 1:8 scale physical model of a subsea module. A comprehensive series of viscous Computational Fluid Dynamics (CFD) simulations were carried out based on Reynolds-averaged Navier–Stokes equations for uniform velocity towing. The results of the simulation were compared with experimental data and showed good agreement. Numerical results of the vorticity field and streamlines at the towing speeds were presented to analyze the distribution of vortexes and flow patterns. The resistance components were analyzed based on the numerical result. It was found that the lateral direction was a better direction for towing operations because of the smaller drag force, resistance, and offset angle. Similar patterns and locations of streamlines and vortexes were present in both the longitudinal and lateral directions, the total resistance coefficient decreases at a Reynolds number greater than that of a cylinder.


Author(s):  
A. Kumar ◽  
P. B. Nair ◽  
A. J. Keane ◽  
S. Shahpar

This paper presents a probabilistic analysis of the effect of erosion on the performance of compressor fan blades. A realistic parametric CAD model is developed to represent eroded blades. Design of Experiments (DOE) techniques are employed to generate a set of candidate points, which are combined with a parametric geometry modeling and grid generation routine to produce a hybrid mesh. A multigrid Reynolds-Averaged Navier Stokes (RANS) solver HYDRA with Spalart Allmaras turbulence model is used for Computational Fluid Dynamics (CFD) simulations. The data generated is used to create a surrogate model for efficient uncertainty propagation. This method is applied to a typical Rolls Royce compressor fan blade section. Monte Carlo Simulation, using the surrogate model, is executed for the probabilistic analysis of the compressor fan blade. Results show upto 5% increase in pressure loss for the eroded compressor fan blades.


2020 ◽  
Vol 36 (04) ◽  
pp. 259-270
Author(s):  
Ahmet Ziya Saydam ◽  
Serhan Gokcay ◽  
Mustafa Insel

Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 769 ◽  
Author(s):  
Jorge Badules ◽  
Mariano Vidal ◽  
Antonio Boné ◽  
Emilio Gil ◽  
F. Javier García-Ramos

A computational fluid dynamics (CFD) model of the fluid velocities generated by the agitation system of an air-assisted sprayer was developed and validated by practical experiments in a laboratory. The model was developed considering different settings of the agitation system: Three water levels in the tank (1000, 2000, and 3000 L); two different numbers of active nozzles (2 or 4); and three working pressures of the agitation circuit (8, 10, or 12 bar). Actual measurements of the fluid velocity into the tank were taken using an acoustic Doppler velocimeter (ADV). CFD simulations made it possible to estimate fluid velocities at 38% of the measuring points with relative errors of less than 30%. Additionally, the CFD models have allowed the correct prediction of the general behavior of the fluid in the tank considering mean velocities depending on the setting parameters of the agitation system (water level in the tank, hydraulic circuit pressure, and number of active nozzles).


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 159
Author(s):  
Knut Erik Teigen Giljarhus ◽  
Daniel Årrestad Stave ◽  
Luca Oggiano

In professional cycling, even small adjustments in position could mean that valuable seconds are gained over the course of a time-trial race. This study investigates the influence of arm position on the aerodynamic drag of a cyclist. Based on a 3D scanned model of a professional cyclist, 64 alternate positions are generated. The parameters that are investigated are the distance between elbows, elbow extension, and distance between hands. Computational fluid dynamics (CFD) simulations of all positions are performed, and a regression model is built from the results. The results indicate that the optimal posture is achieved for a minimum in all investigated parameters, which means that the hands and elbows should be kept together with hands up towards the face. Furthermore, elbow extension seems to be the most crucial parameter, followed by the distance between elbows, and then by the distance between the hands. The presented methodology can be applied to study other parameters relevant to cycling aerodynamics or be applied to other sport activities as well.


Author(s):  
Hyeonu Heo ◽  
Jaehyung Ju ◽  
Doo-Man Kim ◽  
Sangwa Rhie

An understanding of the flow around a tire in contact with the ground is important for when designing a fuel efficient tire as aerodynamic drag accounts for about one third of an entire vehicle’s rolling loss [1]. Recently, non-pneumatic tires (NPTs) have drawn attention mainly due to their low rolling resistance associated with the use of low viscoelastic materials in their construction. However, an NPT’s fuel efficiency should be re-evaluated in terms of aerodynamic drag: discrete flexible spokes in an NPT may cause more aerodynamic drag, resulting in greater rolling resistance. In this study, the aerodynamic flow around an NPT in contact with the ground is investigated for i) stationary and ii) rotating cases using the Reynolds-Averaged Navier-Stokes (RANS) method. The NPT has a more complex flow and a higher drag force than does the pneumatic counterpart.


Author(s):  
Pál Schmitt ◽  
Christian Windt ◽  
Josh Davidson ◽  
John V. Ringwood ◽  
Trevor Whittaker

Computational Fluid Dynamics (CFD) simulations, based on Reynolds Averaged Navier Stokes (RANS) models, are a useful tool for a wide range of coastal and offshore applications, providing a high fidelity representation of the underlying hydrodynamic processes. Generating input waves in the CFD simulation is performed by a numerical wavemaker (NWM), with a variety of different NWM methods existing for this task. While NWMs, based on impulse source methods, have been widely applied for wave generation in depth averaged, shallow water models, they have not seen the same level of adoption in the more general RANS based CFD simulations, due to difficulties in relating the required impulse source function to the resulting free surface elevation for non-shallow water cases. This paper presents an implementation of an impulse source wavemaker, which is able to self-calibrate the impulse source function to produce a desired wave series in deep or shallow water at a specific point in time and space. Example applications are presented, for a numerical wave tank (NWT), based on the opensource CFD software OpenFOAM, for wave packets in deep and shallow water, highlighting the correct calibration of phase and amplitude. Also, the suitability for cases requiring very low reflection from NWT boundaries is demonstrated. Possible issues in the use of the method are discussed and guidance for good application is given.


Author(s):  
Bülent Düz ◽  
Jule Scharnke ◽  
Rink Hallmann ◽  
Jan Tukker ◽  
Siddhant Khurana ◽  
...  

Abstract The kinematics under spilling and plunging breakers are investigated using both experimental and numerical methods. In a modular laboratory flume, the breakers were generated using dispersive focusing, and the kinematics underneath them were measured utilizing the Particle Image Velocimetry (PIV) technique. Using the state-of-art high-speed video cameras and lasers, the kinematics were measured at a high sampling rate without needing phase-locked averaging. Afterwards, Computational Fluid Dynamics (CFD) simulations were carried out for comparison purposes. These simulations were run in single-phase using a finite-volume based Navier-Stokes solver with a piecewise-linear interface reconstruction scheme. The spilling and plunging breakers from the measurements were reconstructed in the computational domain using an iterative scheme. As a result a good match with the measured waves was obtained in the simulations. Results indicate that even though measured kinematics are somewhat higher than the simulated ones especially in the spilling and overturning regions, the CFD simulations can accurately capture the relevant details of the flow and produce reasonably accurate kinematics in comparison with the PIV results.


Sign in / Sign up

Export Citation Format

Share Document