Micro Gas Turbine Combustion Chamber Design and CFD Analysis

Author(s):  
Joao Parente ◽  
Giulio Mori ◽  
Viatcheslav V. Anisimov ◽  
Giulio Croce

In the framework of the non-standard fuel combustion research in micro-small turbomachinery, a newly designed micro gas turbine combustor for a 100-kWe power plant in CHP configuration is under development at the Ansaldo Ricerche facilities. Combustor design starts from a single silo chamber shape with two fuel lines, and is associated with a radial swirler flame stabiliser. Lean premix technique is adopted to control both flame temperature and NOx production. Combustor design process envisages two major steps, i.e. diagnostics-focussed design for methane only and experimentally validated design optimisation with suitable burner adaptation to non-standard fuels. The former step is over, as the first prototype design is ready for experimental testing. Step two is now beginning with a preliminary analysis of the burner adaptation to non-standard fuels. The present paper focuses on the first step of the combustor development. In particular, main design criteria for both burner and liner cooling system development are presented. Besides, design process control invoked both 2D and 3D CFD analysis. Two turbulence models, FLUENT standard k-ε model and Reynolds Stress Model (RSM), are refereed and the results compared. Here both a detailed analysis of CFD results and a preliminary analysis of main chemical kinetic phenomena are discussed.

Author(s):  
Matthew E. Thomas ◽  
Mark J. Ostrander ◽  
Andy D. Leonard ◽  
Mel Noble ◽  
Colin Etheridge

CFD analysis methods were successfully implemented and verified with ongoing industrial gas turbine engine lean premix combustion system development. Selected aspects of diffusion and lean premix combustion modeling, predictions, observations and validated CFD results associated with the Solar Turbines Mars™ SoLoNOx combustor are presented. CO and NOx emission formation modeling details applicable to parametric CFD analysis in an industrial design environment are discussed. This effort culminated in identifying phenomena and methods of potentially further reducing NOx and CO emissions while improving engine operability in the Mars™ SoLoNOx combustion system. A potential explanation for the abrupt rise in CO formation observed in many gas turbine lean premix combustion systems is presented.


Author(s):  
B. Facchini ◽  
C. Carcasci ◽  
G. Ferrara ◽  
L. Innocenti ◽  
D. Coutandin ◽  
...  

In this paper, a Fiat Avio 701F gas turbine re-design process is presented. This already tested gas turbine has been modified, for a particular re-powering application: a reduction in the net power production is required, whereas efficiency and exhaust temperature have been improved by mean of increased hot gas temperature at the first nozzle inlet section. Consequently this re-powering solution clearly requires consistent re-design efforts to satisfy specific plant operating conditions. The gas turbine power output has been tuned to the required value by reducing the air inlet mass flowrate; the combustion chamber setting has been modified with particular attention to the control of pollutant emission level. The increase of inlet stator turbine temperature necessitated a complete review of the three cooled turbine stages. The aim of greater overall efficiency with inlet and exit turbine temperature increase also involved the introduction of a new blade material. For design tool flexibility the blade cooling design procedure has been improved making better optimization of the cooling system possible. In this paper a detailed description of the several gas turbine modifications with particular attention to the blade cooling design procedure and to the corresponding simulation results is reported. The modifications developed could also be introduced on the new version of the 701F, at full power capability, in order to get better efficiency and power.


Author(s):  
V. Vassiliev ◽  
S. Irmisch ◽  
S. Florjancic

The key aspects for the reliable CFD modelling of exhaust diffusers are addressed in this paper. In order to identify adequate turbulence models a number of 2D diffuser configurations have been simulated using different turbulence models and results have been compared with measurements. An automated procedure for a time- and resource-efficient and accurate prediction of complex diffuser configuration is presented. The adequate definitions of boundary conditions for the diffuser simulation using this procedure are discussed. In the second part of this paper, the CFD procedure is being applied to investigate the role of secondary flow on axial diffusers. Prediction results are discussed and compared with available measurement data.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


Author(s):  
C. M. Spadaccini ◽  
J. Lee ◽  
S. Lukachko ◽  
I. A. Waitz ◽  
A. Mehra ◽  
...  

As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this paper presents the design, fabrication, experimental testing, and modeling of the combustion system. Two radial inflow combustor designs were examined; a single-zone arrangement and a primary and dilution-zone configuration. Both combustors were micro-machined from silicon using Deep Reactive Ion Etching (DRIE) and aligned fusion wafer bonding. Hydrogen-air and hydrocarbon-air combustion was stabilized in both devices, each with chamber volumes of 191 mm3. Exit gas temperatures as high as 1800 K and power densities in excess of 1100 MW/m3 were achieved. For the same equivalence ratio and overall efficiency, the dual-zone combustor reached power densities nearly double that of the single-zone design. Because diagnostics in micro-scale devices are often highly intrusive, numerical simulations were used to gain insight into the fluid and combustion physics. Unlike large-scale combustors, the performance of the micro-combustors was found to be more severely limited by heat transfer and chemical kinetics constraints. Important design trades are identified and recommendations for micro-combustor design are presented.


Author(s):  
Maria Cristina Cameretti ◽  
Renzo Piazzesi ◽  
Fabrizio Reale ◽  
Raffaele Tuccillo

Following their recent experiences in the search of methods for reducing the nitric oxide emissions from a micro-gas turbine, the authors discuss in this paper the results of the combustion simulation under different conditions induced by the activation of an exhaust recirculation system. The theoretical approach starts with a matching analysis of the EGR equipped micro-turbine, and then proceeds with the CFD analysis of the combustor. Different combustion models are compared in order to validate the method for NOx reduction by the point of view of a correct development of the chemically reacting process.


2007 ◽  
Vol 345-346 ◽  
pp. 1003-1006 ◽  
Author(s):  
Kwang Beom Hur ◽  
Sang Kyu Rhim ◽  
Jung Keuk Park ◽  
Jae Hoon Kim

The new market penetration using the distributed generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection standards. KEPCO, a government company in Korea, has performed the project to identify and evaluate the performance of Micro Gas Turbine (MGT) technologies focused on 30, 60kW-class grid-connected optimization and combined Heat & Power performance. This paper describes the results for the mechanical, electrical, and environmental tests of MGT on actual grid-connection under Korean regulations. As one of the achievements, the simulation model of Exhaust-gas Absorption Chiller was developed, so that it will be able to analyze or propose new distributed generation system using MGT.


2003 ◽  
Vol 125 (3) ◽  
pp. 709-719 ◽  
Author(s):  
C. M. Spadaccini ◽  
A. Mehra ◽  
J. Lee ◽  
X. Zhang ◽  
S. Lukachko ◽  
...  

As part of an effort to develop a microscale gas turbine engine for power generation and micropropulsion applications, this paper presents the design, fabrication, experimental testing, and modeling of the combustion system. Two radial inflow combustor designs were examined; a single-zone arrangement and a primary and dilution-zone configuration. Both combustors were micromachined from silicon using deep reactive ion etching (DRIE) and aligned fusion wafer bonding. Hydrogen-air and hydrocarbon-air combustion were stabilized in both devices, each with chamber volumes of 191mm3. Exit gas temperatures as high as 1800 K and power densities in excess of 1100MW/m3 were achieved. For the same equivalence ratio and overall efficiency, the dual-zone combustor reached power densities nearly double that of the single-zone design. Because diagnostics in microscale devices are often highly intrusive, numerical simulations were used to gain insight into the fluid and combustion physics. Unlike large-scale combustors, the performance of the microcombustors was found to be more severely limited by heat transfer and chemical kinetics constraints. Important design trades are identified and recommendations for microcombustor design are presented.


Author(s):  
Paolo Laranci ◽  
Gianni Bidini ◽  
Umberto Desideri ◽  
Francesco Fantozzi

Liquid biofuels, such as bioethanol, biodiesel and vegetal oils, can effectively be used in internal combustion engines blended with liquid fuels of fossil origin or in their substitution, allowing a reduction of CO2 and pollutant emissions in the atmosphere. This work is supported by a CFD analysis to study the feasibility of using these fuels derived from biomass in a 80 kWel micro gas turbine, originally designed for operation with natural gas. In this paper preliminary results about the behavior of bioethanol in the MGT combustion chamber are presented. The complete investigation however includes biodiesel and also glycerin, a byproduct of biodiesel production. To carry out the computational simulations, combustion models included in a commercial software and oxidation mechanism of ethanol taken from the literature were used. The geometry of the NG injector was modified to optimize the liquid inlet into the combustor. Simulation results in terms of temperatures, pressures, and emissions were compared with data available for natural gas combustion in the original combustion chamber.


Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of HPT (High Pressure Turbine) cooled components of the BHGE NovaLT™ 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D CFD analysis and the heat conduction in the solid is carried out through a 3D FEM solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine, in order to validate the presented procedure.


Sign in / Sign up

Export Citation Format

Share Document