scholarly journals The 701F Gas Turbine Design Process: Upgrade and Innovations

Author(s):  
B. Facchini ◽  
C. Carcasci ◽  
G. Ferrara ◽  
L. Innocenti ◽  
D. Coutandin ◽  
...  

In this paper, a Fiat Avio 701F gas turbine re-design process is presented. This already tested gas turbine has been modified, for a particular re-powering application: a reduction in the net power production is required, whereas efficiency and exhaust temperature have been improved by mean of increased hot gas temperature at the first nozzle inlet section. Consequently this re-powering solution clearly requires consistent re-design efforts to satisfy specific plant operating conditions. The gas turbine power output has been tuned to the required value by reducing the air inlet mass flowrate; the combustion chamber setting has been modified with particular attention to the control of pollutant emission level. The increase of inlet stator turbine temperature necessitated a complete review of the three cooled turbine stages. The aim of greater overall efficiency with inlet and exit turbine temperature increase also involved the introduction of a new blade material. For design tool flexibility the blade cooling design procedure has been improved making better optimization of the cooling system possible. In this paper a detailed description of the several gas turbine modifications with particular attention to the blade cooling design procedure and to the corresponding simulation results is reported. The modifications developed could also be introduced on the new version of the 701F, at full power capability, in order to get better efficiency and power.

Author(s):  
Cleverson Bringhenti ◽  
Jesuino Takachi Tomita ◽  
Joa˜o Roberto Barbosa

This work presents the performance study of a 1 MW gas turbine including the effects of blade cooling and compressor variable geometry. The axial flow compressor, with Variable Inlet Guide Vane (VIGV), was designed for this application and its performance maps synthesized using own high technological contents computer programs. The performance study was performed using a specially developed computer program, which is able to numerically simulate gas turbine engines performance with high confidence, in all possible operating conditions. The effects of turbine blades cooling were calculated for different turbine inlet temperatures (TIT) and the influence of the amount of compressor-bled cooling air was studied, aiming at efficiency maximization, for a specified blade life and cooling technology. Details of compressor maps generation, cycle analysis and blade cooling are discussed.


Author(s):  
Joao Parente ◽  
Giulio Mori ◽  
Viatcheslav V. Anisimov ◽  
Giulio Croce

In the framework of the non-standard fuel combustion research in micro-small turbomachinery, a newly designed micro gas turbine combustor for a 100-kWe power plant in CHP configuration is under development at the Ansaldo Ricerche facilities. Combustor design starts from a single silo chamber shape with two fuel lines, and is associated with a radial swirler flame stabiliser. Lean premix technique is adopted to control both flame temperature and NOx production. Combustor design process envisages two major steps, i.e. diagnostics-focussed design for methane only and experimentally validated design optimisation with suitable burner adaptation to non-standard fuels. The former step is over, as the first prototype design is ready for experimental testing. Step two is now beginning with a preliminary analysis of the burner adaptation to non-standard fuels. The present paper focuses on the first step of the combustor development. In particular, main design criteria for both burner and liner cooling system development are presented. Besides, design process control invoked both 2D and 3D CFD analysis. Two turbulence models, FLUENT standard k-ε model and Reynolds Stress Model (RSM), are refereed and the results compared. Here both a detailed analysis of CFD results and a preliminary analysis of main chemical kinetic phenomena are discussed.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Stefano Gori ◽  
Luca Bozzi ◽  
Stefano Traverso

This paper reviews a modular-structured program ESMS (Energy System Modular Simulation) for the simulation of air-cooled gas turbines cycles, including the calculation of the secondary air system. The program has been tested for the Ansaldo Energia gas turbine V94.3A, which is one of the more advanced models in the family Vx4.3A with a rated power of 270 MW. V94.3A cooling system has been modeled with SASAC (Secondary Air System Ansaldo Code), the Ansaldo code used to predict the structure of the flow through the internal air system. The objective of the work was to investigate the tuning of the analytical program on the basis of the data from design and performance codes in use at Ansaldo Energy Gas Turbine Department. The results, both at base load over different ambient conditions and in critical off-design operating points (full-speed-no-load and minimum-load), have been compared with APC (Ansaldo Performance Code) and confirmed by field data. The coupled analysis of cycle and cooling network shows interesting evaluations for components life estimation and reliability during off-design operating conditions.


Author(s):  
Selcuk Can Uysal ◽  
James B. Black

Abstract During the operation of an industrial gas turbine, the engine deviates from its new condition performance because of several effects including dirt build-up, compressor fouling, material erosion, oxidation, corrosion, turbine blade burning or warping, thermal barrier coating (TBC) degradation, and turbine blade cooling channel clogging. Once these problems cause a significant impact on engine performance, maintenance actions are taken by the operators to restore the engine to new performance levels. It is important to quantify the impacts of these operational effects on the key engine performance parameters such as power output, heat rate and thermal efficiency for industrial gas turbines during the design phase. This information can be used to determine an engine maintenance schedule, which is directly related to maintenance costs during the anticipated operational time. A cooled gas turbine performance analysis model is used in this study to determine the impacts of the TBC degradation and compressor fouling on the engine performance by using three different H-Class gas turbine scenarios. The analytical tool that is used in this analysis is the Cooled Gas Turbine Model (CGTM) that was previously developed in MATLAB Simulink®. The CGTM evaluates the engine performance using operating conditions, polytropic efficiencies, material properties and cooling system information. To investigate the negative impacts on engine performance due to structural changes in TBC material, compressor fouling, and their combined effect, CGTM is used in this study for three different H-Class engine scenarios that have various compressor pressure ratios, turbine inlet temperatures, and power and thermal efficiency outputs; each determined to represent different classes of recent H-Class gas turbines. Experimental data on the changes in TBC performance are used as an input to the CGTM as a change in the TBC Biot number to observe the impacts on engine performance. The effect of compressor fouling is studied by changing the compressor discharge pressures and polytropic compressor efficiencies within the expected reduction ranges. The individual and combined effects of compressor fouling and TBC degradation are presented for the shaft power output, thermal efficiency and heat rate performance parameters. Possible improvements for the designers to reduce these impacts, and comparison of the reductions in engine performance parameters of the studied H-Class engine scenarios are also provided.


Author(s):  
Hany Rizkalla ◽  
Page Strohl ◽  
Peter Stuttaford

In an effort to maximize efficiency and decrease emissions, modern gas turbine combustors are exposed to extreme operating conditions which if not accounted for during the design process, can lead to premature failure of the combustion components. Of interest to this article are some operating conditions that, in many instances can expose the gas turbine combustion chambers (liners) to asymmetric thermal loads. Highly asymmetric thermal loads at high temperatures can inflict severe distress on combustion liners attributing to thermal creep distortion and Thermo-Mechanical Fatigue (TMF). Modern low emission pre-mix combustion systems such as the Dry Low NOx (DLN) 2.6 in the GE F Class machines and PSM’s FlameSheet combustor employ firing curves that involve “staging” when the gas turbine is ramping up or down in load or is simply operating in part-load condition. During such staging process, the flame resides in only certain sectors of each combustor while the other sectors are cold, these part load conditions can cause high thermal gradients leading to high thermally induced stresses in the liners. High thermal stresses at high metal temperatures can induce severe visco-plastic (creep) geometric distortion in liners upon prolonged exposure to such conditions. Extreme thermally induced creep distortion can eventually lead to liners’ catastrophic failures due to buckling and/or rupture. Under mild circumstances permanent creep distortion of liners can lead to non-optimal combustion and hence attributing to non optimal operation of the gas turbine. Several means can be employed during the design process to avoid and/or account for creep distortion, some of which are discussed in this article. Although linear elastic analysis is usually used by design engineers to predict liner thermal deflection under part load conditions, it is important to note that even though the resulting stresses may be within the material’s elastic range, creep relaxation leading to permanent liner deformation may still occur over time causing non-optimal base load operation and degradation to the gas turbine efficiency. In most cases predicting thermally induced creep distortion over time can only be done using iterative numerical techniques such as FEA coupled with the material specimen creep testing. A case study involving a F class FlameSheet liner will be discussed and used for illustrative purposes. ANSYS non-linear creep FEA modeling was used to predict the creep deformation results over time using Haynes 230 specimen test data. The predicted numerical analytical results matched well with actual hardware characterized data, thus validating the analytical technique.


Author(s):  
Stefano Cordiner ◽  
Simon Pietro Lanzani ◽  
Vincenzo Mulone ◽  
Marco Chiapparini ◽  
Angelo D’Anzi ◽  
...  

An entirely numerical design procedure, based on computational fluid dynamics, is introduced to evaluate the performance of different polymer electrolyte fuel cell layouts and sets of operating conditions for assigned target parameters in terms of performance. The design procedure has been applied to a coflow design, characterized by large active area (500 cm2), moderate temperature (70°C), liquid cooling, and metal supporting. The role of heat transfer between the cell and the cooling system is analyzed to properly address the influence of operating conditions on power density and flooding via a comprehensive parametric analysis.


1995 ◽  
Author(s):  
Kenneth J. Hart ◽  
Alan B. Turner

Research has been conducted into the effects of component geometry and air bleed flow on the radial variation of static pressure and core tangential velocity in a rotor-stator cavity of the type often found behind the impeller of a gas turbine engine centrifugal compressor. A CFD code, validated by rig test data for a wide range of rotor-stator axial gaps and throughflows, has been used to generate pressure and velocity data for typical gas turbine operating conditions. This data has been arranged as a series of simple design curves which relate the rotational speed of the core of fluid between rotor and stator boundary layers, and hence the static pressure distribution, to primary cavity geometry, rotational Reynolds number and bleed throughflow with particular attention to radial inflowing bleeds. Details are provided on the use and limitations of these curves. Predictions using this method have been compared successfully with measured data from engine test and a compressor test rig, modified to facilitate variable quantity and direction of impeller rear face bleed flow, at typical gas turbine operational power conditions. Data generated by these curves can be used directly in the design process and to validate integral momentum methods which can provide relatively simple computation of rotor-stator cavity pressure and velocity distributions independently or within air system network programs. This approach is considered to be a cost and time effective addition to the analytical design process especially if validated CFD code, which can accommodate rotational flows consistently and accurately, is not available.


Author(s):  
Matteo Cerutti ◽  
Luca Bozzi ◽  
Federico Bonzani ◽  
Carlo Carcasci

Combined cycle and partial load operating of modern heavy-duty gas turbines require highly efficient secondary air systems to supply both cooling and sealing air. Accurate performance predictions are then a fundamental demand over a wide range of operability. The paper describes the development of an efficient procedure for the investigation of gas turbine secondary flows, based on an in-house made fluid network solver, written in Matlab® environment. Fast network generation and debugging are achieved thanks to Simulink® graphical interface and modular structure, allowing predictions of the whole secondary air system. A crucial aspect of such an analysis is the calculation of blade and vane cooling flows, taking into account the interaction between inner and outer extraction lines. The problem is closed thanks to ad-hoc calculated transfer functions: cooling system performances and flow functions are solved in a pre-processing phase and results correlated to influencing parameters using Response Surface Methodology (RSM) and Design of Experiments (DOE) techniques. The procedure has been proved on the secondary air system of the AE94.3A2 Ansaldo Energia gas turbine. Flow functions for the cooling system of the first stage blade, calculated by RSM and DOE techniques, are presented. Flow functions based calculation of film cooling, tip cooling and trailing edge cooling air flows is described in details.


Author(s):  
James C. Corman

A revolutionary step has been taken in the development of the Next Advance in Power Generation Systems — “H” Technology Combined Cycle. This new gas turbine combined cycle system increases thermal performance to the 60% level by increasing gas turbine operating conditions to 2600°F (1430°C) at a pressure ratio of 23 to 1. This represents a significant increase in operating temperature for the gas turbine. However, the potential for single digit NOx levels (based upon 15% O2 in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrated the gas turbine and steam turbine cycles. Although a significant advance has been taken in performance, the new power generation system has been configured with a substantial number of proven concepts and technology programs are ongoing to validate the new features. The technical activities which support the introduction of the new turbine system have reached a point in the development cycle where the results are integrated into the design methods. This has permitted the “H” Technology to achieve a design readiness status and the first unit will be under test in late 1997.


Sign in / Sign up

Export Citation Format

Share Document