Effect of Bleed Flows on Flutter and Forced Response of Core Compressors

Author(s):  
Luca di Mare ◽  
George Simpson ◽  
Bernhard Mueck ◽  
Abdulnaser I. Sayma

This paper presents a methodology for the modeling of flutter and forced response in axial compressors while taking into account the effect of bleed off-takes. Usually, aeroelasticity analyses are performed assuming smooth solid end walls. This type of analysis has two main shortcomings. Firstly, it does not account for the change in the aerodynamic speed of the stages downstream of the bleed off-take, so that aeroelasticity analyses are not performed at the correct aerodynamic conditions. Secondly, bleed off-takes influence the flow pattern particularly in the stages around or close to the bleed off-take, thus leading to possibility of obtaining the wrong aeroelastic response. Another objective of this paper is to present a methodology for the accurate prediction of the flow in a compressor with bleed off-take, by both including the geometry of the bleed off-take and performing the calculations on the entire compressor, thus eliminating errors resulting from prescribing boundary conditions at inter-blade row boundaries. It is concluded that bleed off-takes could influence significantly the aeroelastic response of the blades.

Author(s):  
Johann Gross ◽  
Malte Krack ◽  
Harald Schoenenborn

The prediction of aerodynamic blade forcing is a very important topic in turbomachinery design. Usually, the wake from the upstream blade row and the potential field from the downstream blade row are considered as the main causes for excitation, which in conjunction with relative rotation of neighboring blade rows, give rise to dynamic forcing of the blades. In addition to those two mechanisms so-called Tyler-Sofrin (or scattered or spinning) modes, which refer to the acoustic interaction with blade rows further up- or downstream, may have a significant impact on blade forcing. In particular, they lead to considerable blade-to-blade variations of the aerodynamic loading. In part 1 of the paper a study of these effects is performed on the basis of a quasi 3D multi-row and multi-passage compressor configuration. Part 2 of the paper proposes a method to analyze the interaction of the aerodynamic forcing asymmetries with the already well-studied effects of random mistuning stemming from blade-to-blade variations of structural properties. Based on a finite element model of a sector, the equations governing the dynamic behavior of the entire bladed disk can be efficiently derived using substructuring techniques. The disk substructure is assumed as cyclically symmetric, while the blades exhibit structural mistuning and linear aeroelastic coupling. In order to avoid the costly multi-stage analysis, the variation of the aerodynamic loading is treated as an epistemic uncertainty, leading to a stochastic description of the annular force pattern. The effects of structural mistuning and stochastic aerodynamic forcing are first studied separately and then in a combined manner for a blisk of a research compressor without and with aeroelastic coupling.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Harald Schoenenborn

The aeroelastic prediction of blade forcing is still a very important topic in turbomachinery design. Usually, the wake from an upstream airfoil and the potential field from a downstream airfoil are considered as the main disturbances. In recent years, it became evident that in addition to those two mechanisms, Tyler–Sofrin modes, also called scattered or spinning modes, may have a significant impact on blade forcing. It was recently shown in literature that in multirow configurations, not only the next but also the next but one blade row is very important as it may create a large circumferential forcing variation, which is fixed in the rotating frame of reference. In the present paper, a study of these effects is performed on the basis of a quasi three-dimensional (3D) multirow and multipassage compressor configuration. For the analysis, a harmonic balancing code, which was developed by DLR Cologne, is used for various setups and the results are compared to full-annulus unsteady calculations. It is shown that the effect of the circumferentially different blade excitation is mainly contributed by the Tyler–Sofrin modes and not to blade-to-blade variation in the steady flow field. The influence of various clocking positions, coupling schemes and number of harmonics onto the forcing is investigated. It is also shown that along a speed-line in the compressor map, the blade-to-blade forcing variation may change significantly. In addition, multirow flutter calculations are performed, showing the influence of the upstream and downstream blade row onto aerodynamic damping. The effect of these forcing variations onto random mistuning effects is investigated in the second part of the paper.


2021 ◽  
Vol 263 (2) ◽  
pp. 4120-4131
Author(s):  
Murat Inalpolat ◽  
Enes Timur Ozdemir

In this paper, a generalized dynamic model of a shell structure has been developed and utilized for diagnostics purposes. The dynamic model is three-dimensional, includes the effects of rotary inertia and shear deformation, and can handle moving loads in radial, tangential and axial directions. The model is utilized to determine in-plane radial displacements of the shell structure under concentrated radial loads for different boundary conditions. The periodic loads are constructed using harmonics obtained through the Fourier series expansion method. The modal expansion technique is implemented for calculation of the steady state forced response of the shell structure. A simplified acoustic radiation model is also implemented in conjunction with the dynamic shell model to predict the noise radiated from a rotating circular cylindrical shell structure under different kinematic, loading and boundary conditions. Moreover, forced vibration response and acoustic radiation predicted will be employed to reveal patterns in the signals that can potentially be used for diagnostics of rotating machinery applications. The shell model is derived using a comprehensive approach and thus can be used to model prevalent engineering applications ranging from electric motors to gears and bearings.


Author(s):  
A. Hergt ◽  
U. Siller

The development of modern axial compressors has already reached a high level. Therefore an enlargement of the design space by means of new or advanced aerodynamic methods is necessary in order to achieve further enhancements of performance and efficiency. The tandem arrangement of profiles in a transonic compressor blade row is such a method. For an efficient industrial application the knowledge of the fundamental design principles is needed. This paper presents the recent research work on transonic compressor tandem profiles at DLR Institute of Propulsion Technology. It deals with the fundamental description of the operation principles of a modern transonic compressor tandem cascade. By considering these principles and based on an optimization database with over 1200 members design recommendations are developed.


Author(s):  
M. Afzal ◽  
I. Lopez Arteaga ◽  
L. Kari ◽  
V. Kharyton

This paper investigates the damping potential of strip dampers on a real turbine bladed disk. A 3D numerical friction contact model is used to compute the contact forces by means of the Alternate Frequency Time domain method. The Jacobian matrix required during the iterative solution is computed in parallel with the contact forces, by a quasi-analytical method. A finite element model of the strip dampers, that allows for an accurate description of their dynamic properties, is included in the steady-state forced response analysis of the bladed disk. Cyclic symmetry boundary conditions and the multiharmonic balance method are applied in the formulation of the equations of motion in the frequency domain. The nonlinear forced response analysis is performed with two different types of boundary conditions on the strip: (a) free-free and (b) elastic, and their influence is analyzed. The effect of the strip mass, thickness and the excitation levels on the forced response curve is investigated in detail.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
W. D. Zhu ◽  
N. A. Zheng

The exact response of a translating string with constant tension and arbitrarily varying length is determined under general initial conditions and external excitation. The governing equation is transformed to a standard hyperbolic equation using characteristic transformation. The domain of interest for the transformed equation is divided into groups of subdomains according to the properties of wave propagation. d’Alembert’s solution for any point in the zeroth subdomain group is obtained by using the initial conditions. The solution is extended to the whole domain of interest by using the boundary conditions, and a recursive mapping is found for the solution in the second and higher groups of subdomains. The least upper bound of the displacement of the freely vibrating string is obtained for an arbitrary movement profile. The forced response of the string with nonhomogeneous boundary conditions is obtained using a transformation method and the direct wave method. A new method is used to derive the rate of change of the vibratory energy of the translating string from the system viewpoint. Three different approaches are used to derive and interpret the rate of change of the vibratory energy of the string within a control volume, and the energy growth mechanism of the string during retraction is elucidated. The solution methods are applied to a moving elevator cable with variable length. An interesting parametric instability phenomenon in a translating string with sinusoidally varying length is discovered.


Author(s):  
Rolf Emunds ◽  
Ian K. Jennions ◽  
Dieter Bohn ◽  
Jochen Gier

This paper deals with the numerical simulation of flow through a 1.5 stage axial flow turbine. The 3-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. Firstly, two significantly different Navier-Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple bladerow tests, the other code is currently only suitable for a single blade row. Secondly, the 1.5 stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.


1984 ◽  
Vol 51 (4) ◽  
pp. 831-836 ◽  
Author(s):  
P. J. Torvik

A procedure is developed whereby the steady-state forced response and the modes of free vibration for elastic systems having mixed or discontinuous boundary conditions can be determined. Approximate solutions are obtained as a superposition of a set of functions, each of which satisfies the field equations but not the boundary conditions. The coefficients of this expansion are obtained through applying a variational principle developed from Hamilton’s principle which for simple harmonic motion, is equivalent to Reissner’s principle. The reduction from the general elastic solid to the elastic plate is given, as are some results obtained for the first several natural frequencies of an elastic circular plate, free on a portion of the boundary and clamped on the remainder.


Sign in / Sign up

Export Citation Format

Share Document