Comparison of 2D and 3D Airfoils in Combination With Non Axisymmetric End Wall Contouring: Part 1 — Experimental Investigations

Author(s):  
Tobias W. Zimmermann ◽  
Oliver Curkovic ◽  
Manfred Wirsum ◽  
Andrew Fowler ◽  
Kush Patel

Tangential end wall contouring is intended to improve turbomachinery blading efficiency. This paper is the first of a series of two papers. It summarizes the experimental investigation of a test turbine with end wall contoured vanes and blades. Constant section airfoils as well as optimized 3D high pressure steam turbine blading in baseline and end wall contoured configurations have been examined in a 2 stage axial turbine test rig at the Institute of Power Plant Technology, Steam and Gas Turbines (IKDG) of RWTH Aachen University. The test rig is driven with air. Brush seals are implemented within the casing sided cavities to minimize the leakage flow near the tip end walls, where the contouring is also applied. The pressure and temperature data that is recorded in three axial measuring planes are plotted to visualize the change in flow structure. This has shown that the efficiency is increased for 2D airfoils by means of end wall contouring, which is caused by a homogenized inflow to the second stage. However the efficiency of the first stage suffers, the end wall contouring is beneficial for the performance of the engine. Both phenomena (an efficiency loss in stage one and an improvement of the performance in stage two) have also been measured for the optimized 3D configurations thus it can be expected that end wall contouring has also a beneficial impact on the performance of multi row turbines. The second part of this paper presents the results of numerical investigations of end-wall contoured blades. It will demonstrate how the secondary flow phenomena are influenced by end-wall contours. The simulations are validated with measured data from the test rig.

Author(s):  
Dieter E. Bohn ◽  
Jing Ren ◽  
Christian Tu¨mmers ◽  
Michael Sell

An important goal in the development of turbine bladings is improving their efficiency to achieve an optimized usage of energy resources. This requires a detailed insight into the complex 3D-flow phenomena in multi-stage turbines. In order to investigate the flow characteristics of modern highly loaded turbine profiles, a test rig with a two-stage axial turbine has been set up at the Institute of Steam and Gas Turbines, Aachen University. The test rig is especially designed to investigate different blading designs. In order to analyze the influence of the blade design on the unsteady blade row interaction, the 3D flow through the two-stage turbine is simulated numerically, using an unsteady Navier-Stokes computer code. The investigations include a comparison of two bladings with different design criteria. The reference blading is a commonly used cylindrical designed blading. This blade design will be compared with a bow-blading, which is designed to minimize the secondary flow phenomena near the endwall in order to achieve a balanced mass flow through nearly the whole passage height. The investigations will focus on the different loss behavior of the two bladings. Unsteady profile pressure distributions and radial efficiencies of the two blade designs will be discussed in detail. The flow conditions are taken from experimental investigations performed at the Institute of Steam and Gas Turbines. On the basis of the experiments a validation of the code will be performed by comparing the numerical results to the corresponding experimental data at the inlet and the outlet of the blading.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Tobias W. Zimmermann ◽  
Oliver Curkovic ◽  
Manfred Wirsum ◽  
Andrew Fowler ◽  
Kush Patel

Tangential endwall contouring (TEWC) is intended to improve the turbomachinery blading efficiency. This paper summarizes the experimental and numerical investigation of a test turbine with endwall contoured vanes and blades. Constant section (2D) airfoils as well as optimized compound lean (3D) high pressure steam turbine blading in baseline and endwall contoured configurations have been examined. Brush seals (BSs) are implemented within the casing sided cavities to minimize the leakage flow near the tip endwalls, where the contouring is also applied. The pressure and temperature data that are recorded in three axial measuring planes are plotted to visualize the change in flow structure. This shows that the efficiency is increased for 2D airfoils by means of endwall contouring. However, the efficiency of the first stage suffers, and the endwall contouring is still beneficial for the overall performance of the engine. Both phenomena (an efficiency loss in stage one and an improvement of the performance in stage two) have also been measured for the optimized 3D configurations; thus, it can be expected that the endwall contouring has also a beneficial impact on the performance of multirow turbines. The numerical investigations demonstrate in detail, how the secondary flow phenomena are influenced by end-wall contouring and a description of the changes in vortex formations as well as blade loading are given for the various configurations. It has been found that for steady computational fluid dynamics (CFD) simulations the use of stage interfaces suppresses the positive effects of the endwall contour onto the downstream blade row.


Author(s):  
Dieter Bohn ◽  
Robert Krewinkel ◽  
Christian Tu¨mmers ◽  
Michael Sell

An important goal in the development of turbine bladings is to improve their efficiency for an optimized usage of energy resources. This requires a detailed insight into the complex 3D-flow phenomena in multi-stage turbines. In order to investigate the flow characteristics of modern highly loaded turbine profiles a test rig with a two stage axial turbine has been set up at the Institute of Steam and Gas Turbines, RWTH Aachen University. The test rig is especially designed to investigate the influence of different cavity sizes. In order to analyze the influence of the cavity size on the secondary flow and to discuss the effects of the blade loading, the 3D flow through the 2-stage turbine with shrouded blades is investigated numerically, using the steady Navier-Stokes inhouse computer code, CHT-Flow. The turbine blading is designed to concentrate the mass flow in the middle of the passage in order to keep the main flow away from the secondary flow regions at the endwalls of the blade. The simulations include a comparison of a configuration without cavities (design case) and two configurations, where the axial gap between the shroud and the endwalls is about 5 mm and the radial gap between the shroud and the endwall is varied between 0.8 mm (open radial gap) and radial gaps “near zero” (closed radial gap). The investigations are done with focus on the secondary flow phenomena in the second guide vane. For a detailed analysis of the blade load the design point and an off-design point are simulated for each blading. The flow conditions are taken from experimental investigations performed at the Institute of Steam and Gas Turbines, Aachen University. In the experimental setup, the turbine is operated at a low pressure ratio of 1.4 with an inlet pressure of 3.2·105 Pa. The numerical results will also be compared to the corresponding experimental data at the outlet of the second stage.


Author(s):  
Oliver Curkovic ◽  
Tobias W. Zimmermann ◽  
Manfred Wirsum ◽  
Andrew Fowler ◽  
Kush Patel

Secondary flow phenomena have a considerable part in the efficiency loss in turbomachinery. A potential method to reduce these secondary flow losses is tangential end wall contouring inside the blade passages. The present paper is the second of two papers which investigate the impact of tangential end wall contouring on 2D and 3D airfoils compared to a baseline configuration. The first paper summarizes the experimental investigation on a 2-stage air driven turbine test rig located at the Institute of Power Plant Technology, Steam and Gas Turbines RWTH Aachen University. To enhance the impact of the tangential end wall contours (TEWC) on the near wall flow, the rotor cavities are sealed by means of combined brush- and labyrinth seals. The stator cavities are sealed by labyrinth seals, only. This paper investigates the flow phenomena using CFD with the commercial software package ANSYS 15.0©. The brush seals are modeled by using the porous body approach and are calibrated using pressure drop measurements across the first rotor cavity. The experimental data will be presented and is used to validate the numerical model. For this, circumferential plots for the measurement planes are shown. In addition a detailed description of the changes in vortex formations as well as blade loading will be given for the various configurations. Finally a discussion of the impact on the turbine’s efficiency is given. It has been found, that for steady CFD simulations the use of stage interfaces suppresses the positive effects of the tangential end wall contour onto the downstream blade row.


Author(s):  
Dieter Bonn ◽  
Harald Funke ◽  
Jochen Gier

In the development of modern gas turbines the increase of the turbine inlet temperature is restricted by the need to cool the first stages of the turbine. In addition the flow leaving the combustor is thermally inhomogeneous. Since the blade cooling has to be designed for the actual local hot gas temperatures, it is important to know how these temperature inhomogeneities develop and attenuate inside the multistage flow passage. In this investigation the flow inside a 4-stage turbine, which is set up in a test rig at the Institute of Steam and Gas Turbines, Aachen University of Technology, is calculated with a state-of-the-art fully three-dimensional Navier-Stokes solver based on an accurate finite volume scheme. The stator and rotor rows are coupled via mixing planes. The turbine is a scaled down original turbine with realistic axial gaps. The homogeneous reference case is qualified by comparison to recent experimental data gathered at the test rig. Therefore, the flow is extensively measured at several locations. In a second step a radial temperature streak is set at the inlet for the same point of operation. The results show the development of the temperature streak through the four stages. With this information the underlying mixing processes are described and analysed. It is found that the hot streak segregation effect is present in all four stages.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Daniel Riedmüller ◽  
Jan Sousek ◽  
Michael Pfitzner

This paper reports on the flow (centrifugal = radially outward, centripetal = radially inward) through rotating radial orifices with and without preswirl in the flow approaching the orifice in the outer annulus. The aerodynamical behavior of flow through radial rotating holes is different from the one through axial and stationary holes due to the presence of centrifugal and Coriolis forces. To investigate the flow phenomena and the discharge coefficient of these orifices in detail, an existing test rig containing two independently rotating shafts (corotating and counter rotating) was used. To simulate conditions of real gas turbines, where the flow is often influenced by upstream components, various preswirl angles were used in the test rig. Measurements of the flow discharge coefficient in both flow directions through the orifices (centripetal and centrifugal), with and without preswirl generation in the outer annulus, are presented at various flow conditions (pressure ratios across orifices, Mach numbers of approaching flow) and for different geometric parameters (length to diameter ratios, sharp/rounded inlet edges). Flow effects that occur with preswirled flow are clarified. A comparison of the experimental data, for both flow directions, shows a similar behavior of the discharge coefficients with increasing shaft speeds. To supplement the experimental data and to better understand the experimental findings, numerical simulations were performed, which show a good agreement with the experimental results. Furthermore, an optimization model with complete automatic grid generation, computational fluid dynamics (CFD) simulation, and postprocessing, was built to enable large parametric studies, e.g., grid independence of the solutions.


Author(s):  
G. Norris ◽  
R. G. Dominy ◽  
A. D. Smith

Inter-turbine diffusers which provide flow continuity between the H.P. and L.P. turbines, are increasingly important within modern aero gas turbines, as the fan and hence L.P. turbine diameters increase with thrust. These gas turbines rely on struts within the inter-turbine diffuser to serve both as load bearing supports for inner spools and as passages to supply the engine with vital services such as cooling air and lubrication oil. Experimental measurements have been made on a representative test rig in order to investigate the affect of a ring of struts on both the local and general flow phenomena as well as investigating their effect on overall duct performance. More realistic flow conditions are made available by the use of inlet wakes representative of those created by an upstream turbine row. Measurements include static pressures on the strut and duct surfaces along with velocity and total pressure measurements at various axial locations. From these results calculations of total pressure loss have been made. The experimental results presented in this paper have been used to validate C.F.D. flow predictions on the duct with and without struts. The computational results included, capture the main physical features of the flow but clear limitations are observed and are discussed in this paper.


Author(s):  
Dariusz Nowak ◽  
Tomasz Dobski ◽  
Rafal Slefarski ◽  
Radoslaw Jankowski ◽  
Fulvio Magni

Crude oil is still an attractive fuel for electricity production due to its low extraction costs in relation to other fuels. However, combustion of crude oil in modern gas turbines must meet certain criteria, which mainly include the reduction of harmful gas emissions, the elimination of harmful dust from the exhaust gas, the improvement of turbine efficiency, the limiting of the power degradation process and elimination of hard deposits. Experimental studies are always needed to meet these requirements because of common complexity in CFD crude oil combustion models. This paper presents experimental investigations of the combustion process of crude oil. Using different sorts of crude oil, all experiments are performed in the atmospheric test rig of a top-mounted combustor, which was scaled down from the baseline system. The test rig was optimized for the typical silo gas turbine boundary conditions. The combustion process is described and quantified with the measured temperature and velocity field distributions in the top-mounted combustion chamber for different injector design’s parameters. Additionally, measured profiles of the molar fraction of CO2, are discussed and compared with respect to the injector parameters. Finally, based upon the experimental results gathered, the possibility of fuel flexibility in the top-mounted combustor chamber is discussed.


Author(s):  
Dieter E. Bohn ◽  
Karsten A. Kusterer

A leading edge cooling configuration is investigated numerically by application of a 3-D conjugate fluid flow and heat transfer solver, CHT-Flow. The code has been developed at the Institute of Steam and Gas Turbines, Aachen University of Technology. It works on the basis of an implicit finite volume method combined with a multi-block technique. The cooling configuration is an axial turbine blade cascade with leading edge ejection through two rows of cooling holes. The rows are located in the vicinity of the stagnation line, one row is on the suction side, the other row is on the pressure side. The cooling holes have a radial ejection angle of 45°. This configuration has been investigated experimentally by other authors and the results have been documented as a test case for numerical calculations of ejection flow phenomena. The numerical domain includes the internal cooling fluid supply, the radially inclined holes and the complete external flow field of the turbine vane in a high resolution grid. Periodic boundary conditions have been used in the radial direction. Thus, end wall effects have been excluded. The numerical investigations focus on the aerothermal mixing process in the cooling jets and the impact on the temperature distribution on the blade surface. The radial ejection angles lead to a fully three dimensional and asymmetric jet flow field. Within a secondary flow analysis it can be shown that complex vortex systems are formed in the ejection holes and in the cooling fluid jets. The secondary flow fields include asymmetric kidney vortex systems with one dominating vortex on the back side of the jets. The numerical and experimental data show a good agreement concerning the vortex development. The phenomena on the suction side and the pressure side are principally the same. It can be found that the jets are barely touching the blade surface as the dominating vortex transports hot gas under the jets. Thus, the cooling efficiency is reduced.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Sign in / Sign up

Export Citation Format

Share Document