Experimental Investigations of Catalytic Combustion for High-Pressure Gas Turbine Applications

Author(s):  
Jeevan Jayasuriya ◽  
Arturo Manrique ◽  
Reza Fakhrai ◽  
Jan Fredriksson ◽  
Torsten Fransson

Catalytic combustion has proven to be a suitable alternative to conventional flame combustion in gas turbines for achieving Ultra-Low Emission levels (ULE). In the process of catalytic combustion, it is possible to achieve a stable combustion of lean fuel/air mixtures which results in reduced combustion temperature in the combustor. The ultimate result is that almost no thermal-NOx is formed and the emissions of carbon monoxide and hydrocarbon emissions are reduced to single-digit limits. Successful development of catalytic combustion technology would lead to reducing pollutant emissions in gas turbines to ultra-low levels at lower operating costs. Since the catalytic combustion prevents the pollutant formations in the combustion there is no need for costly emission cleaning systems. High-quality experimental data of combustion catalyst operations at gas turbine working conditions and validated numerical models are essential tools for the design and development of catalytic gas turbine combustors. The prime objective of the work presented in this paper was to obtain catalytic operational data under said conditions. Experimental investigations were carried out to determine the operational data on different types of combustion catalysts against different fuel types at gas turbine operational conditions. A pilot-scale 100 k W high-pressure combustion test facility was used for the experimental investigations of catalytic combustion under real gas turbine conditions. Combustor pressure can be maintained at any desired level between 1 to 35 bars. The maximum combustion air supply is 100 g/s, which can be electrically preheated up to 600°C and humidified up to 30% of weight as required by test conditions. Catalysts used in the test facility are highly active noble metal catalysts for ignition purposes and thermally stable metal oxide catalysts for continuing reactions. Tests are conducted as the testing of single catalyst segments or combinations of several segments. The measurements taken are flow rates (air/fuel ratio) temperatures (inlet, surface and the outlet of each catalyst segment), pressure (combustor) and emissions of NOx, CO and UHC. This paper presents the design of the high-pressure catalytic combustion test facility and an experimental comparison of methane combustion over Pd on alumina and Pd/Pt (bi-metal) on alumina catalysts at varying pressure levels up to 20 bars. The catalysts concerned were cylindrical shaped (35 mm in diameter and 20 mm in height) honeycomb type fully coated catalysts. The results showed that the Pt/Pd on alumina catalysts is better in low temperature ignition and combustion stability over the Pd on alumina catalysts. Emission measurements showed that the fuel conversion over the tested Pt/Pd on alumina catalyst was around 10% while fuel conversion over a similar Pd on alumina catalyst (geometry and capacity) was only 4%. Fuel conversion rates showed the tendency to be further reduced (over the same catalysts) against increasing pressure.

Author(s):  
Frank Reiss ◽  
Sven-Hendrik Wiers ◽  
Ulrich Orth ◽  
Emil Aschenbruck ◽  
Martin Lauer ◽  
...  

This paper describes the development and test results of the low emission combustion system for the new industrial gas turbines in the 6–7 MW class from MAN Diesel & Turbo. The design of a robust combustion system and the achievement of very low emission targets were the most important design goals of the combustor development. During the design phase, the analysis of the combustor (i.e. burner design, air distribution, liner cooling design) was supported with different CFD tools. This advanced Dry Low Emission can combustion system (ACC) consists of 6 cans mounted externally on the gas turbine. The behavior and performance of a single can sector was tested over a wide load range and with different boundary conditions; first on an atmospheric test rig and later on a high pressure test rig with extensive instrumentation to ensure an efficient test campaign and accurate data. The atmospheric tests showed a very good performance for all combustor parts and promising results. The high pressure tests demonstrated very stable behavior at all operation modes and very low emissions to satisfy stringent environmental requirements. The whole operation concept of the combustion system was tested first on the single-can high pressure test bed and later on twin and single shaft gas turbines at MAN’s gas turbine test facility. During the engine tests, the can combustors demonstrated the expected combustion performance under real operation conditions. All emissions and performance targets were fully achieved. On the single shaft engine, the combustors were running with single digit ppm NOx levels between 50% and 100% load. The validation phase and further optimization of the gas turbines and the engine components are ongoing. The highlights of the development process and results of the combustor and engine tests will be presented and discussed within this paper.


Author(s):  
Daniel Guyot ◽  
Gabrielle Tea ◽  
Christoph Appel

Reducing gas turbine emissions and increasing their operational flexibility are key targets in today’s gas turbine market. In order to further reduce emissions and increase the operational flexibility of its GT24 (60Hz) and GT26 (50Hz), Alstom has introduced an improved SEV burner and fuel lance into its GT24 upgrade 2011 and GT26 upgrade 2011 sequential reheat combustion system. Sequential combustion is a key differentiator of Alstom GT24 engines in the F-class gas turbine market. The inlet temperature for the GT24 SEV combustor is around 1000 degC and reaction of the fuel/oxidant mixture is initiated through auto-ignition. The recent development of the Alstom sequential combustion system is a perfect example of evolutionary design optimizations and technology transfer between Alstom GT24 and GT26 engines. Better overall performance is achieved through improved SEV burner aerodynamics and fuel injection, while keeping the main features of the sequential burner technology. The improved SEV burner/lance concept has been optimized towards rapid fuel/oxidant mixing for low emissions, improved fuel flexibility with regards to highly reactive fuels (higher C2+ and hydrogen content), and to sustain a wide operation window. In addition, the burner front panel features an improved cooling concept based on near-wall cooling as well as integrated acoustics damping devices designed to reduce combustion pulsations thus extending the SEV combustor’s operation window even further. After having been validated extensively in the Alstom high pressure sector rig test facility, the improved GT24 SEV burner has been retrofitted into a commercial GT24 field engine for full engine validation during long-term operation. This paper presents the obtained high pressure sector rig and engine validation results for the GT24 (2011) SEV burner/lance hardware with a focus on reduced NOX and CO emissions and improved operational behavior of the SEV combustor. The high pressure tests demonstrated robust SEV burner/lance operation with up to 50% lower NOX formation and a more than 70K higher SEV burner inlet temperature compared to the GT24 (2006) hardware. For the GT24 engine with retrofitted upgrade 2011 SEV burner/lance all validation targets were achieved including an extremely robust operation behavior, up to 40% lower GT NOX emissions, significantly lower CO emissions at partload and baseload, a very broad operation window (up to 100K width in SEV combustor inlet temperature) and all measured SEV burner/lance temperatures in the expected range. Sector rig and engine validation results have confirmed the expected SEV burner fuel flexibility (up to 18%-vol. C2+ and up to 5%-vol. hydrogen as standard).


2021 ◽  
Author(s):  
Bernhard Ćosić ◽  
Frank Reiß ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives for pumps and compressors at remote locations on islands and in deserts. Moreover, small gas turbines are used in CHP applications with a high need for availability. In these applications, liquid fuels like ‘Diesel Fuel No. 2’ can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is already capable of ultra-low NOx emissions for a variety of gaseous fuels. This system has been further developed to provide dry dual fuel capability to the MGT family. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only, without the need for any additional atomizing air. The pilot stage is continuously operated to support further the flame stabilization across the load range, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles placed at the exit of the main air swirler. These premixed nozzles are based on fluidic oscillator atomizers, wherein a rapid and effective atomization of the liquid fuel is achieved through self-induced oscillations of the liquid fuel stream. We present results of numerical and experimental investigations performed in the course of the development process illustrating the spray, hydrodynamic, and thermal performance of the pilot injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification of the whole combustion system within full engine tests. The burner shows excellent emission performance (NOx, CO, UHC, soot) without additional water injection, while maintaining the overall natural gas performance. Soot and particle emissions, quantified via several methods, are well below legal restrictions. Furthermore, when not in liquid fuel operation, a continuous purge of the injectors based on compressor outlet (p2) air has been laid out. Generic atmospheric coking tests were conducted before verifying the purge system in full engine tests. Thereby we completely avoid the need for an additional high-pressure auxiliary compressor or demineralized water. We show the design of the fuel supply and distribution system. We designed it to allow for rapid fuel switchovers from gaseous fuel to liquid fuel, and for sharp load jumps. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000 in detail.


1998 ◽  
Vol 120 (3) ◽  
pp. 509-513 ◽  
Author(s):  
T. Fujii ◽  
Y. Ozawa ◽  
S. Kikumoto ◽  
M. Sato ◽  
Y. Yuasa ◽  
...  

Recently, the use of gas turbine systems, such as combined cycle and cogeneration systems, has gradually increased in the world. But even when a clean fuel such as LNG (liquefied natural gas) is used, thermal NOx is generated in the high temperature gas turbine combustion process. The NOx emission from gas turbines is controlled through selective catalytic reduction processes (SCR) in the Japanese electric industry. If catalytic combustion could be applied to the combustor of the gas turbine, it is expected to lower NOx emission more economically. Under such high temperature and high pressure conditions, as in the gas turbine, however, the durability of the catalyst is still insufficient. So it prevents the realization of a high temperature catalytic combustor. To overcome this difficulty, a catalytic combustor combined with premixed combustion for a 1300°C class gas turbine was developed. In this method, catalyst temperature is kept below 1000°C, and a lean premixed gas is injected into the catalytic combustion gas. As a result, the load on the catalyst is reduced and it is possible to prevent the catalyst deactivation. After a preliminary atmospheric test, the design of the combustort was modified and a high pressure combustion test was conducted. As a result, it was confirmed that NOx emission was below 10 ppm (at 16 percent O2) at a combustor outlet gas temperature of 1300°C and that the combustion efficiency was almost 100 percent. This paper presents the design features and test results of the combustor.


Author(s):  
T. Fujii ◽  
Y. Ozawa ◽  
S. Kikumoto ◽  
M. Sato ◽  
Y. Yuasa ◽  
...  

Recently, use of gas turbine systems such as combined cycle and cogeneration systems has gradually increased in the world. But even when a clean fuel such as LNG (liquefied natural gas) is used, thermal NOx is generated in the high temperature gas turbine combustion process. The NOx emission from gas turbines is controlled through selective catalytic reduction processes (SCR) in the Japanese electric industry. If catalytic combustion could be applied to the combustor of the gas turbine, it is expected to lower NOx emission more economically. Under such high temperature and high pressure conditions as in the gas turbine, however, the durability of the catalyst is still insufficient. So it prevents the realization of a high temperature catalytic combustor. To overcome this difficulty, a catalytic combustor combined with premixed combustion for a 1300°C class gas turbine was developed. In this method, catalyst temperature is kept below 1000°C and a lean premixed gas is injected into the catalytic combustion gas. As a result, the load on the catalyst is reduced and it is possible to prevent the catalyst deactivation. After a preliminary atmospheric test, the design of the combustor was modified and a high pressure combustion test was conducted. As a result, it was confirmed that NOx emission was below 10ppm (at 16% O2) at a combustor outlet gas temperature of 1300°C and that the combustion efficiency was almost 100%. This paper presents the design features and test results of the combustor.


Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


Author(s):  
Toshiaki Sakurazawa ◽  
Takeo Oda ◽  
Satoshi Takami ◽  
Atsushi Okuto ◽  
Yasuhiro Kinoshita

This paper describes the development of the Dry Low Emission (DLE) combustor for L30A gas turbine. Kawasaki Heavy Industries, LTD (KHI) has been producing relatively small-size gas turbines (25kW to 30MW class). L30A gas turbine, which has a rated output of 30MW, achieved the thermal efficiency of more than 40%. Most continuous operation models use DLE combustion systems to reduce the harmful emissions and to meet the emission regulation or self-imposed restrictions. KHI’s DLE combustors consist of three burners, a diffusion pilot burner, a lean premix main burner, and supplemental burners. KHI’s proven DLE technologies are also adapted to the L30A combustor design. The development of L30 combustor is divided in four main steps. In the first step, Computational Fluid Dynamics (CFD) analyses were carried out to optimize the detail configuration of the combustor. In a second step, an experimental evaluation using single-can-combustor was conducted in-house intermediate-pressure test facility to evaluate the performances such as ignition, emissions, liner wall temperature, exhaust temperature distribution, and satisfactory results were obtained. In the third step, actual pressure and temperature rig tests were carried out at the Institute for Power Plant Technology, Steam and Gas Turbines (IKDG) of Aachen University, achieving NOx emission value of less than 15ppm (O2=15%). Finally, the L30A commercial validation engine was tested in an in-house test facility, NOx emission is achieved less than 15ppm (O2=15%) between 50% and 100% load operation point. L30A field validation engine have been operated from September 2012 at a chemical industries in Japan.


Author(s):  
Daniel Moëll ◽  
Daniel Lörstad ◽  
Annika Lindholm ◽  
David Christensen ◽  
Xue-Song Bai

DLE (Dry Low Emission) technology is widely used in land based gas turbines due to the increasing demands on low NOx levels. One of the key aspects in DLE combustion is achieving a good fuel and air mixing where the desired flame temperature is achieved without too high levels of combustion instabilities. To experimentally study fuel and air mixing it is convenient to use water along with a tracer instead of air and fuel. In this study fuel and air mixing and flow field inside an industrial gas turbine burner fitted to a water rig has been studied experimentally and numerically. The Reynolds number is approximately 75000 and the amount of fuel tracer is scaled to represent real engine conditions. The fuel concentration in the rig is experimentally visualized using a fluorescing dye in the water passing through the fuel system of the burner and recorded using a laser along with a CCD (Charge Couple Device) camera. The flow and concentration field in the burner is numerically studied using both the scale resolving SAS (Scale Adaptive Simulation) method and the LES (Large Eddy Simulation) method as well as using a traditional two equation URANS (Unsteady Reynolds Average Navier Stokes) approach. The aim of this study is to explore the differences and similarities between the URANS, SAS and LES models when applied to industrial geometries as well as their capabilities to accurately predict relevant features of an industrial burner such as concentration and velocity profiles. Both steady and unsteady RANS along with a standard two equation turbulence model fail to accurately predict the concentration field within the burner, instead they predict a concentration field with too sharp gradients, regions with almost no fuel tracer as well as regions with far too high concentration of the fuel tracer. The SAS and LES approach both predict a more smooth time averaged concentration field with the main difference that the tracer profile predicted by the LES has smoother gradients as compared to the tracer profile predicted by the SAS. The concentration predictions by the SAS model is in reasonable agreement with the measured concentration fields while the agreement for the LES model is excellent. The LES shows stronger fluctuations in velocity over time as compared to both URANS and SAS which is due to the reduced amounts of eddy viscosity in the LES model as compared to both URANS and SAS. This study shows that numerical methods are capable of predicting both velocity and concentration in a gas turbine burner. It is clear that both time and scale resolved methods are required to accurately capture the flow features of this and probably most industrial DLE gas turbine burners.


Author(s):  
W. S. Cheung ◽  
G. J. M. Sims ◽  
R. W. Copplestone ◽  
J. R. Tilston ◽  
C. W. Wilson ◽  
...  

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. A flame transfer function describes the change in the rate of heat release in response to perturbations in the inlet flow as a function of frequency. It is a quantitative assessment of the susceptibility of combustion to disturbances. The resulting fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. Flame transfer functions for LPP combustion are poorly understood at present but are crucial for predicting combustion oscillations. This paper describes an experiment designed to measure the flame transfer function of a simple combustor incorporating realistic components. Tests were conducted initially on this combustor at atmospheric pressure (1.2 bar and 550 K) to make an early demonstration of the combustion system. The test rig consisted of a plenum chamber with an inline siren, followed by a single LPP premixer/duct and a combustion chamber with a silencer to prevent natural instabilities. The siren was used to induce variable frequency pressure/acoustic signals into the air approaching the combustor. Both unsteady pressure and heat release measurements were undertaken. There was good coherence between the pressure and heat release signals. At each test frequency, two unsteady pressure measurements in the plenum were used to calculate the acoustic waves in this chamber and hence estimate the mass-flow perturbation at the fuel injection point inside the LPP duct. The flame transfer function relating the heat release perturbation to this mass flow was found as a function of frequency. The same combustor hardware and associated instrumentation were then used for the high pressure (15 bar and 800 K) tests. Flame transfer function measurements were taken at three combustion conditions that simulated the staging point conditions (Idle, Approach and Take-off) of a large turbofan gas turbine. There was good coherence between pressure and heat release signals at Idle, indicating a close relationship between acoustic and heat release processes. Problems were encountered at high frequencies for the Approach and Take-off conditions, but the flame transfer function for the Idle case had very good qualitative agreement with the atmospheric-pressure tests. The flame transfer functions calculated here could be used directly for predicting combustion oscillations in gas turbine using the same LPP duct at the same operating conditions. More importantly they can guide work to produce a general analytical model.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Sign in / Sign up

Export Citation Format

Share Document