The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling: Part II — Adiabatic Effectiveness Results

Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present companion papers report the results of an experimental investigation on possible beneficial effects of an upstream ramp on discrete hole film cooling. This analysis was carried out on a flat plate model. Two hole geometries have been considered: cylindrical and fan-shaped with conical expanded exit. To compare different cooling schemes, a combined aero-thermal analysis was performed. Tests have been carried out at low speed and low inlet turbulence intensity level, with blowing ratios varied in the range 0.3–1.0. Part I was focused on the aerodynamic analysis: it has been shown that the introduction of a ramp is always detrimental, as it gives a strong loss increase (+5%). Fan-shaped hole was instead the best solution, as it gives losses comparable with the cylindrical one, reduced turbulence mixing and jet dilution. Part II of this paper faces the thermal analysis. The thermal behaviour of the cooled surface has been analysed using the wide banded TLC’s technique, so to obtain adiabatic effectiveness distributions. Additional air temperature measurements have been carried out by traversing a thermocouple downstream of injection holes. The upstream ramp was found to provide a thermal protection improvement (+40%) only at low blowing rate in the case of cylindrical hole. The application of a ramp upstream of a fanshaped hole was instead detrimental for all blowing conditions. The fan shaped hole geometry with no ramp resulted to be the best solution also in terms of adiabatic effectiveness (50% higher than the cylindrical one at BR = 0.5).

2021 ◽  
Author(s):  
Jacob D. Moore ◽  
Christopher C. Easterby ◽  
David G. Bogard

Abstract The high heat loads at the leading-edge regions of turbine vanes and blades necessitate the most robust thermal protection, typically accomplished via a dense array of film cooling holes, nicknamed the “showerhead.” Although research has shown that film cooling using shaped holes provides more reliable thermal protection than that using cylindrical holes, the effects on cooling performance from varying the geometric details of the shaped hole design are not well characterized. In this study, adiabatic effectiveness and off-the-wall thermal field measurements were conducted for two shaped hole geometries designed as successors to a baseline hole geometry presented in a previous study. One geometry with a 40% increase in area ratio exhibited only a marginal improvement in adiabatic effectiveness (∼10%). A second design with a 12° forward and lateral expansion angle with a breakout area 40% larger performed marginally worse than its matched area ratio counterpart (∼15% lower), suggesting a negative sensitivity to breakout area. Such changes in performance for different shaped hole designs were small compared to the boost in performance gained by switching from a cylindrical hole to a shaped hole, which suggests cooling performance is insensitive to specific shaped hole details provided the exterior coolant flow is well-attached.


Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present companion papers report the results of an experimental investigation on possible beneficial effects of an upstream ramp on discrete hole film cooling. This analysis was carried out on a flat plate model. Two hole geometries have been considered: cylindrical and fan-shaped with conical expanded exit. To compare different cooling schemes, a combined aero-thermal analysis was performed. Tests have been carried out at low speed and low inlet turbulence intensity level, with blowing ratios varied in the range 0.3–1.0. The aerodynamic investigation has been performed through the measurements of discharge coefficients and detailed flow field measurements. Surveys were carried out by traversing a flattened Pitot tube. Additional turbulence measurements have been carried out by means of hot wire traverses. All this information, together with the adiabatic effectiveness results presented in Part II of this paper, allowed drawing a comprehensive picture of the complex aero-thermal flow field in the injection region. The upstream ramp provided a moderate improvement in the case of cylindrical holes, as it allows the coolant to diffuse someway, before interacting with the mainflow, but it produced also a significant increase of aerodynamic losses. The fan shaped hole geometry without the ramp resulted to be the best solution, as it provides a coolant injection with a good lateral spreading and a low turbulence level.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Author(s):  
Atui Kohil ◽  
David G. Bogard

In this study the film cooling performance of a single row of discrete holes inclined at an injection angle of 55° is investigated at a density ratio of DR = 1.6. Three different hole geometries were used in this study, a round hole and two shaped holes. One shaped hole had forward and lateral expansions of 15°, and the other a 15° lateral with a 25° forward expansion. For reference, a round hole with an injection angle of 35° was also tested. The film cooling performance of each hole shape was evaluated using adiabatic effectiveness, thermal field, and velocity field measurements. The shaped holes showed higher spatially averaged adiabatic effectiveness than the round hole over the whole range of momentum flux ratios (I) investigated. The effectiveness values for the shaped holes were only marginally better than the round hole at the low I, but at the high I, the shaped holes performed much better than the round hole. The temperature and velocity field measurements near the hole exit suggest that there is a slight detachment of the jet from the wall for the round hole, while the jets remain attached for the two shaped holes. The shaped hole with the larger forward expansion had a warmer jet with a higher trajectory at the hole exit suggesting ingestion of mainstream fluid and flow separation within the hole.


Author(s):  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jiang-tao Bai ◽  
Du-chun Xu

Film cooling performance of a new shaped hole: waist-shaped slot hole is studied in this paper. Experimental measurement and numerical simulation are carried out to investigate the film cooling character and physics of this new shaped hole. And comparisons between the waist-shaped slot hole and two kinds of console holes are also performed. Both the cooling effectiveness distribution and the heat transfer coefficient distribution of the waist-shaped slot hole are similar with those of the console hole with large divergence angle because of the effect of the waist-shaped slot hole’s structure. The middle constriction structure of the waist-shaped slot hole and the coupled vortices make jets from the waist-shaped slot holes produce higher cooling effectiveness in the midspan region between adjacent holes. And also due to the effect of the middle constriction structure, the heat transfer coefficient of the waist-shaped slot hole is very high in the upstream midspan region. However, the heat transfer coefficient in the downstream midspan region is lower than that in the region near the hole centerline because of the effect of the coupled vortices. The waist-shaped slot holes provide the surface with very good thermal protection, especially in the upstream region. Although the console holes with small exit-entry area ratio provide better thermal protection than the waist-shaped slot holes due to small turbulence intensity, the flow resistance characteristic of the waist-shaped slot hole is much better.


Author(s):  
Antar M. M. Abdala ◽  
Qun Zheng ◽  
Fifi N. M. Elwekeel

In the present work, computational simulations was made using ANSYS CFX to predict the improvements in film cooling performance with multi trench. Multi-trench configuration consists of two trenches together, one wider trench and the other is narrow trench that extruded from the wider one. Several blowing ratios in the range (0.5:5) were investigated. By using the multi trench configuration, the coolant jet impacted the trench wall two times allowing increasing the spreading of coolant laterally in the trench, reducing jet velocity and jet completely covered on the surface. The results indicate that this configuration increased adiabatic effectiveness as blowing ratio increased. No observed film blow-off at all blowing ratios. The adiabatic film effectiveness of multi trench case outperformed the narrow trench case, laidback fan-shaped hole, fan-shaped hole and cylinder hole at different blowing ratios. An additional benefit is the low flow rate will provide the same cooling effect by using multi trench configuration.


Author(s):  
Robert P. Schroeder ◽  
Karen A. Thole

Film cooling on airfoils is a crucial cooling method as the gas turbine industry seeks higher turbine inlet temperatures. Shaped film cooling holes are widely used in many designs given the improved performance over that of cylindrical holes. Although there have been numerous studies of shaped holes, there is no established baseline shaped hole to which new cooling hole designs can be compared. The goal of this study is to offer the community a shaped hole design, representative of proprietary and open literature holes that serves as a baseline for comparison purposes. The baseline shaped cooling hole design includes the following features: hole inclination angle of 30° with a 7° expansion in the forward and lateral directions; hole length of 6 diameters; hole exit-to-inlet area ratio of 2.5; and lateral hole spacing of 6 diameters. Adiabatic effectiveness was measured with this new shaped hole and was found to peak near a blowing ratio of 1.5 at density ratios of 1.2 and 1.5 as well as at both low and moderate freestream turbulence of 5%. Reductions in area-averaged effectiveness due to freestream turbulence at low blowing ratios were as high as 10%.


1998 ◽  
Vol 120 (3) ◽  
pp. 549-556 ◽  
Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents detailed measurements of the film-cooling effectiveness for three single, scaled-up film-cooling hole geometries. The hole geometries investigated include a cylindrical hole and two holes with a diffuser-shaped exit portion (i.e., a fan-shaped and a laid-back fan-shaped hole). The flow conditions considered are the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the blowing ratio (up to 2). The coolant-to-mainflow temperature ratio is kept constant at 0.54. The measurements are performed by means of an infrared camera system, which provides a two-dimensional distribution of the film-cooling effectiveness in the near field of the cooling hole down to x/D = 10. As compared to the cylindrical hole, both expanded holes show significantly improved thermal protection of the surface downstream of the ejection location, particularly at high blowing ratios. The laidback fan-shaped hole provides a better lateral spreading of the ejected coolant than the fan-shaped hole, which leads to higher laterally averaged film-cooling effectiveness. Coolant passage cross-flow Mach number and orientation strongly affect the flowfield of the jet being ejected from the hole and, therefore, have an important impact on film-cooling performance.


Author(s):  
Ellen Wilkes ◽  
Joshua Anderson ◽  
John McClintic ◽  
David Bogard

This study focuses on specifics of gas turbine film cooling. Laboratory film cooling tests are important for industry because actual engine conditions are too hot, too small, and too fast to take accurate and high resolution measurements. Experiments are typically conducted using a plenum to feed coolant through round or shaped film cooling holes. Less common are experiments using cross-flow fed coolant, a method that flows coolant perpendicular to the mainstream flow and better represents engine designs. There are a few studies that have explored shaped holes in cross-flow, but none have looked at the effect cross-flow channel parameters other than Mach number. Here, the effectiveness of film cooling is quantified by measuring adiabatic effectiveness on a flat plate with a single row of shaped film cooling holes in cross-flow. A preliminary examination of the effect of cross-flow versus plenum fed coolant on the adiabatic effectiveness of the axial 7-7-7 shaped hole, a laidback fan-shaped hole with a 30 degree injection angle, is first conducted. Subsequently, the effects of two internal coolant parameters on film cooling effectiveness are presented: Reynold’s number inside the cross-flow channel, and velocity ratio (defined as the ratio of cross-flow channel average velocity to mainstream velocity). By measuring the effect of these parameters, a chain of relative importance can be generated and applied to future experimentation. Parameters that heavily influence film cooling effectiveness can be studied further and optimized for turbine film cooling design.


Author(s):  
J. T. Liu ◽  
X. F. Peng

A numerical simulation was conducted to investigate the film effectiveness of film cooling using a single hole with two types of geometry: cylindrical hole with constant cross section and shaped hole with conically widened exit. The film cooling jet was injected through a 30° inclined hole to the surface and with lateral directions of 0°, 45° and 90°, for the blowing rates of 0.5, 1.0 and 2.0, respectively. The film effectiveness analyzing method was discussed based on the simulation. An effort is performed to form a more comprehensive evaluation technology with the definition of three parameters, film coverage, average cooling capability and uniformity of film. The results indicate that the film quality of compound angle injection depends on the equilibrium between the lateral and axial momentum components of coolant jet, and that the film protects the surface effectively at moderate blowing rate. The use of a shaped hole shows noticeable advantage.


Sign in / Sign up

Export Citation Format

Share Document