Analysis of the Biomass Integrated Combined Cycles With Two Different Structures of Gas Turbines

Author(s):  
Sebastian Lepszy ◽  
Tadeusz Chmielniak

Biomass integrated gasification combined cycles (BIGCC) are an interesting solution for electricity production. In relation to other biomass conversion technologies, BIGCC is characterized by relative high energy efficiency. For the sake of high complexity of such systems, one of crucial tasks is evaluation and comparison of the different technological structures of BIGCC. The article shows models and results of simulations of gas steam cycles integrated with biomass gasification. All models and simulations are preformed with Aspen Plus computer program. In the paper the main comparison is made between systems with simple gas turbine and gas turbine with regeneration. Simple gas turbine model based on LM2500 gas turbine parameters, Mercury 50 gas turbine parameters are used for model of gas turbine with regeneration. The model of gas generator consists of two equilibrium reactors. The use of two reactors led to more precise simulations of the flue gas composition, than the model with one reactor. Systems used for study include low-temperature gas cleaning system. Steam cycle consists of 1-pressure heat recovery steam generator (HRSG) and a condensing steam turbine. The main results of the work are: comparison of energy efficiency between system with gas turbine with regeneration and simple gas turbine, sensitive analysis of the impact of pressure in HRSG on energy efficiency, comparison of energy efficiency and heat and mass streams for different configurations of heat exchangers.

Author(s):  
Sebastian Lepszy ◽  
Tadeusz Chmielniak

Biomass integrated gasification combined cycles (BIGCC) are an interesting solution for electricity production. In relation to other biomass conversion technologies, BIGCC is characterized by relatively high energy efficiency. This article presents models and results of simulations of the gas steam cycles integrated with pressurized gasification using biomass as a feedstock. The model and simulations are preformed with Aspen Plus® computer program. The gas generator model consists of two equilibrium reactors. The use of two reactors led to more precise simulations of the flue gas composition, than the model with one reactor. The systems used for study include high-temperature gas cleaning system and a simple gas turbine. The steam cycle consists of 1-pressure heat recovery steam generator (HRSG) and a condensing steam turbine. The main results of the work are: comparison of energy efficiency for a system with different pressure ratio in a gas turbine, sensitive analysis of the impact of steam temperature and pressure in HRSG on energy efficiency. The economic analysis includes determination of the electricity price in Polish economic conditions.


1995 ◽  
Vol 117 (4) ◽  
pp. 673-677 ◽  
Author(s):  
C. S. Cook ◽  
J. C. Corman ◽  
D. M. Todd

The integration of gas turbines and combined cycle systems with advances in coal gasification and gas stream cleanup systems will result in economically viable IGCC systems. Optimization of IGCC systems for both emission levels and cost of electricity is critical to achieving this goal. A technical issue is the ability to use a wide range of coal and petroleum-based fuel gases in conventional gas turbine combustor hardware. In order to characterize the acceptability of these syngases for gas turbines, combustion studies were conducted with simulated coal gases using full-scale advanced gas turbine (7F) combustor components. It was found that NOx emissions could be correlated as a simple function of stoichiometric flame temperature for a wide range of heating values while CO emissions were shown to depend primarily on the H2 content of the fuel below heating values of 130 Btu/scf (5125 kJ/NM3) and for H2/CO ratios less than unity. The test program further demonstrated the capability of advanced can-annular combustion systems to burn fuels from air-blown gasifiers with fuel lower heating values as low as 90 Btu/scf (3548 kJ/NM3) at 2300°F (1260°C) firing temperature. In support of ongoing economic studies, numerous IGCC system evaluations have been conducted incorporating a majority of the commercial or near-commercial coal gasification systems coupled with “F” series gas turbine combined cycles. Both oxygen and air-blown configurations have been studied, in some cases with high and low-temperature gas cleaning systems. It has been shown that system studies must start with the characteristics and limitations of the gas turbine if output and operating economics are to be optimized throughout the range of ambient operating temperature and load variation.


Author(s):  
W. Schmitz ◽  
D. Hein

Amongst the available alternatives of regenerative energy sources, biomass may play an important role in the future. Biomass represents stored solar energy, accessible whenever there is demand. But so far, its large potential has only been used to a small extent. This is partly due to the fact that solid biomass is a common fuel for the production of heat, but is hardly used in combined heat and power (CHP) plants. For the conversion of solid fuels, combustion in combination with a Rankine cycle is the only well established technology available today, thus acceptable net efficiencies (> 25% LHV) are only possible in complex, rather large scale plants. However, since the occurrence of biomass differs depending on region and season, and because of its low energy density and thus reduced transportability, biomass is particularly suited for decentralized applications, i.e. for the generation of heat and power (1) in the small power range. This paper discusses strategies for the integration of biomass gasification / pyrolysis and gas cleaning processes into different gas turbine schemes. Rather than reviewing all possible aspects of and concepts for the usage of biomass in gas turbine applications, this paper evaluates some key aspects (pressurization, tar removal, gas cleaning, choice of gas turbine cycle) of directly fired gas turbine concepts with regard to small scale applications. The paper shows that tar is a key problem. Especially for small scale applications solutions based on the combustion of tars, like pressurized biomass conversion in combination with hot gas cleaning, prove to be simple and efficient. This paper also compares the characteristics of integrated gasification cycles, e.g. by demonstrating difficulties connected with the integration of steam blown allothermal gasification (reforming). Furthermore, it is shown that recuperated gas turbines are well suited for highly efficient, yet simple small scale applications. Test results indicate that “mild” pyrolysis is an alternative technology for the production of comparatively clean medium heating value gases. Integrating the use of pyrolysis gas and charcoal into a simple gas turbine plant, however, can not easily be achieved.


1974 ◽  
Author(s):  
R. B. Schiefer ◽  
D. A. Sullivan

The current shortage of conventional gas turbine fuels has created the need for new sources of “clean” fuel. One of the most promising new fuels is low Btu gaseous fuel, such as produced by air injected coal or oil gasifiers or other chemical processes. The various sources of low Btu fuels and their combustion characteristics are discussed. To burn many of the low Btu fuels in the 100–300 Btu/scf range necessitates certain design modifications to the gas turbine originally optimized for high energy fuels. The extent of the modification depends greatly on the low Btu fuel. The impact of low Btu fuels on the gas turbine thermodynamic cycle performance and environmental performance is very encouraging. From the environmental viewpoint, low Btu fuels promise to be “clean” fuels while providing increased output at higher thermal cycle efficiencies than achieved with conventional fuels.


1996 ◽  
Vol 118 (3) ◽  
pp. 507-515 ◽  
Author(s):  
S. Consonni ◽  
E. D. Larson

Gas turbines fueled by integrated biomass gasifiers are a promising option for base load electricity generation from a renewable resource. Aeroderivative turbines, which are characterized by high efficiencies at smaller scales, are of special interest because transportation costs for biomass constrain biomass conversion facilities to relatively modest scales. Commercial development activities and major technological issues associated with biomass integrated-gasifier/gas turbine (BIG/GT) combined cycle power generation are reviewed in Part A of this two-part paper. Also, the computational model and the assumptions used to predict the overall performance of alternative BIG/GT cycles are outlined. The model evaluates appropriate value of key parameters (turbomachinery efficiencies, gas turbine cooling flows, steam production in the heat recovery steam generator, etc.) and then carries out energy, mass, and chemical species balances for each plant component, with iterations to insure whole-plant consistency. Part B of the paper presents detailed comparisons of the predicted performance of systems now being proposed for commercial installation in the 25–30 MWe power output range, as well as predictions for advanced combined cycle configurations (including with intercooling) with outputs from 22 to 75 MWe. Finally, an economic assessment is presented, based on preliminary capital cost estimates for BIG/GT combined cycles.


Author(s):  
C. S. Cook ◽  
J. C. Corman ◽  
D. M. Todd

The integration of gas turbines and combined cycle systems with advances in coal gasification and gas stream cleanup systems will result in economically viable IGCC systems. Optimization of IGCC systems for both emission levels and cost of electricity is critical to achieving this goal. A technical issue is the ability to use a wide range of coal and petroleum-based fuel gases in conventional gas turbine combustor hardware. In order to characterize the acceptability of these syngases for gas turbines, combustion studies were conducted with simulated coal gases using full scale advanced gas turbine (7F) combustor components. It was found that NOx emissions could be correlated as a simple function of stoichiometric flame temperature for a wide range of heating values while CO emissions were shown to depend primarily on the H2 content of the fuel below heating values of 130 Btu/scf (5125 kJ/NM3) and for H2/CO ratios less than unity. The test program further demonstrated the capability of advanced can-annular combustion systems to burn fuels from air-blown gasifiers with fuel lower heating values as low as 90 Btu/scf (3548 kJ/NM3) at 2300 F (1260 C) firing temperature. In support of ongoing economic studies, numerous IGCC system evaluations have been conducted incorporating a majority of the commercial or near commercial coal gasification systems coupled with “F” series gas turbine combined cycles. Both oxygen and air-blown configurations have been studied, in some cases with high and low temperature gas cleaning systems. It has been shown that system studies must start with the characteristics and limitations of the gas turbine if output and operating economics are to be optimized throughout the range of ambient operating temperature and load variation.


Author(s):  
J. A. Lycklama a` Nijeholt ◽  
E. M. J. Komen ◽  
A. J. L. Verhage ◽  
M. C. van Beek

Replacement of fossil fuel by biomass-derived fuel is currently under study in the Netherlands within the context of CO2 -neutral electricity production. In view of this, co-firing biogas in the natural-gas fired Eems gas turbine power plant is being considered. This would entail extension of the power station with a biomass gasification plant for the production of biogas. The main unit of the Electrabel Eemshaven Power Station consists of five GE MS9001FA-gas turbines. A target is to replace up to 13% of natural gas consumption by biogas. The objective of the current project was to determine the impact of co-firing on the flame behavior. Therefore various options for biogas co-firing using combinations of pilot and premix burners have been studied. Computational Fluid Dynamics (CFD) simulations of the combustion process using a geometrical model of the complete combustion chamber have been performed. The flow conditions at the premix burner outlets were determined with a separate, detailed CFD model of the burner, simulating the fuel-air mixing with the required high accuracy. Advanced combustion modeling with help of the detailed GRI 3.0-reaction mechanism was used, as well as simpler models for fast chemical kinetics. A method was devised for calibrating the applied combustion models. Various firing strategies involving the premix and pilot burners were analyzed. Safe ranges for biogas co-firing have been determined in this first feasibility study.


2021 ◽  
Vol 13 (3) ◽  
pp. 1360
Author(s):  
Teodora M. Șoimoșan ◽  
Ligia M. Moga ◽  
Livia Anastasiu ◽  
Daniela L. Manea ◽  
Aurica Căzilă ◽  
...  

Harnessing renewable energy sources (RES) using hybrid systems for buildings is almost a deontological obligation for engineers and researchers in the energy field, and increasing the percentage of renewables within the energy mix represents an important target. In crowded urban areas, on-site energy production and storage from renewables can be a real challenge from a technical point of view. The main objectives of this paper are quantification of the impact of the consumer’s profile on overall energy efficiency for on-site storage and final use of solar thermal energy, as well as developing a multicriteria assessment in order to provide a methodology for selection in prioritizing investments. Buildings with various consumption profiles lead to achieving different values of performance indicators in similar configurations of storage and energy supply. In this regard, an analysis of the consumption profile’s impact on overall energy efficiency, achieved in the case of on-site generation and storage of solar thermal energy, was performed. The obtained results validate the following conclusion: On-site integration of solar systems allowed the consumers to use RES at the desired coverage rates, while restricted by on-site available mounting areas for solar fields and thermal storage, under conditions of high energy efficiencies. In order to segregate the results and support optimal selection, a multicriteria analysis was carried out, having as the main criteria the energy efficiency indicators achieved by hybrid heating systems.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


2021 ◽  
Author(s):  
Senthil Krishnababu ◽  
Omar Valero ◽  
Roger Wells

Abstract Data driven technologies are revolutionising the engineering sector by providing new ways of performing day to day tasks through the life cycle of a product as it progresses through manufacture, to build, qualification test, field operation and maintenance. Significant increase in data transfer speeds combined with cost effective data storage, and ever-increasing computational power provide the building blocks that enable companies to adopt data driven technologies such as data analytics, IOT and machine learning. Improved business operational efficiency and more responsive customer support provide the incentives for business investment. Digital twins, that leverages these technologies in their various forms to converge physics and data driven models, are therefore being widely adopted. A high-fidelity multi-physics digital twin, HFDT, that digitally replicates a gas turbine as it is built based on part and build data using advanced component and assembly models is introduced. The HFDT, among other benefits enables data driven assessments to be carried out during manufacture and assembly for each turbine allowing these processes to be optimised and the impact of variability or process change to be readily evaluated. On delivery of the turbine and its associated HFDT to the service support team the HFDT supports the evaluation of in-service performance deteriorations, the impact of field interventions and repair and the changes in operating characteristics resulting from overhaul and turbine upgrade. Thus, creating a cradle to grave physics and data driven twin of the gas turbine asset. In this paper, one branch of HFDT using a power turbine module is firstly presented. This involves simultaneous modelling of gas path and solid using high fidelity CFD and FEA which converts the cold geometry to hot running conditions to assess the impact of various manufacturing and build variabilities. It is shown this process can be executed within reasonable time frames enabling creation of HFDT for each turbine during manufacture and assembly and for this to be transferred to the service team for deployment during field operations. Following this, it is shown how data driven technologies are used in conjunction with the HFDT to improve predictions of engine performance from early build information. The example shown, shows how a higher degree of confidence is achieved through the development of an artificial neural network of the compressor tip gap feature and its effect on overall compressor efficiency.


Sign in / Sign up

Export Citation Format

Share Document