Design Details of a 600 MW Graz Cycle Thermal Power Plant for CO2 Capture

Author(s):  
H. Jericha ◽  
W. Sanz ◽  
E. Go¨ttlich ◽  
F. Neumayer

The high power highest efficiency zero-emission Graz Cycle plant of 400 MW was presented at ASME IGTI conference 2006 and at CIMAC conference 2007. In continuation of these works a raise of power output to 600 MW is presented and important design details are discussed. The cycle pressure ratio is increased from 40 to 50 bar by a half-speed stage connected via gears to the main compressor shaft allowing to keep the volume flow to the main compressors constant. The compressors are driven by the transonic compressor turbine stage. Mass flow to the compressors is increased by the factor of 1.27, density in blades of the main compressors is raised by the same factor. The turbine inlet temperature is raised to 1500°C together with the increase in the cycle pressure ratio, both are well accepted values in gas turbine technology today. Most important development problems have to be solved in designing the oxy-fuel burners. They are presented here in the form of coaxial jets of fuel (natural gas or coal gas alternatively) held together by a steam vortex providing coherent flow and flame is ignited by its strong suction. Combustion is finalized by the mixing with a counter-rotating outer vortex flow of working gas leading to a well defined position of vortex break down. The transonic stage of the compressor turbine is supplied with innovative steam cooling forming coherent layers outside of the blade shell of which stress deliberations will be presented.

Author(s):  
Ching-Jen C. J. Tang

Humidified Gas Turbine (HGT) cycles such as the Evaporative Gas Turbine (EGT) and the Steam-Injected Gas Turbine (STIG) using humid air as the working medium do not require a complete steam turbine bottoming cycle; thus, their initial capital costs are not as high as those for the conventional combined cycles. The performance of a HGT cycle could be comparable to a state-of-the-art combined cycle for small loads. The availability of the steam from a HGT cycle presents opportunities for designing steam-cooled blades. Since the specific heat capacity for steam is higher than that for air, steam could potentially be a better coolant for turbine blades than air, resulting in higher cycle efficiency. In this study, three known HGT cycles are evaluated in terms of their electrical efficiencies and power outputs: the STIG, the Part-flow Evaporative Gas Turbine (PEvGT), and the combined STIG cycles. All the three HGT cycles are analyzed in two cooling options: steam and air coolings. The HGT cycles will be evaluated using consistent thermodynamic properties and assumptions. Like a simple gas turbine cycle, the HGT cycles are based on the well-known Brayton cycle whose performance is dictated by the cycle pressure ratio and turbine inlet temperature. Therefore, the electrical efficiencies and power outputs of the HGT cycles will be calculated as a function of the cycle pressure ratio and turbine inlet temperature. The steam-cooled cycles provide advantages over the air-cooled cycles in the electrical efficiency, power output, and combustion stability. The steam cooling improves the electrical efficiency by approximately 1.4 percentage points for the STIG cycle, by approximately 1.7 percentage points for the PEvGT cycle, and by approximately 1 percentage point for the combined STIG cycle. The maximum electrical efficiency of the steam-cooled PEvGT cycle is 54.6%, only 0.2 percentage points higher than that for the steam-cooled combined STIG cycle. The steam cooling generally results in more power output than the air cooling does for all the HGT cycles at most operating conditions. In addition, the steam cooling reduces the water content of the humid air entering the combustor, leading to significantly improved combustion stability.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
L. He ◽  
J. Yi ◽  
P. Adami ◽  
L. Capone

For efficient and accurate unsteady flow analysis of blade row interactions, a space–time gradient (STG) method has been proposed. The development is aimed at maintaining as many modeling fidelities (the interface treatment in particular) of a direct unsteady time-domain method as possible while still having a significant speed-up. The basic modeling considerations, main method ingredients and some preliminary verification have been presented in Part I of the paper. Here in Part II, further case studies are presented to examine the capability and applicability of the method. Having tested a turbine stage in Part I, here we first consider the applicability and robustness of the method for a three-dimensional (3D) transonic compressor stage under a highly loaded condition with separating boundary layers. The results of the STG solution compare well with the direct unsteady solution while showing a speed up of 25 times. The method is also used to analyze rotor–rotor/stator–stator interferences in a two-stage turbine configuration. Remarkably, for stator–stator and rotor–rotor clocking analyses, the STG method demonstrates a significant further speed-up. Also interestingly, the two-stage case studies suggest clearly measurable clocking dependence of blade surface time-mean temperatures for both stator–stator clocking and rotor–rotor clocking, though only small efficiency variations are shown. Also validated and illustrated is the capacity of the STG method to efficiently evaluate unsteady blade forcing due to the rotor–rotor clocking. Considerable efforts are directed to extending the method to more complex situations with multiple disturbances. Several techniques are adopted to decouple the disturbances in the temporal terms. The developed capabilities have been examined for turbine stage configurations with inlet temperature distortions (hot streaks), and for three blade-row turbine configurations with nonequal blade counts. The results compare well with the corresponding direct unsteady solutions.


Author(s):  
K. Sarabchi ◽  
A. Ansari

Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.


Author(s):  
Ryszard Chodkiewicz ◽  
Jerzy Porochnicki ◽  
Bazyli Kaczan

This study deals with new internal combustion turbine power systems in which a steam-gas mixture is the working medium. Heat is delivered to the system by injecting gaseous fuel and steam into the combustion chamber. Unlike in STIG systems, the fluid expansion in the turbine is much deeper (much below the atmospheric pressure) and the exhaust gas is cooled in a heat exchanger-condenser in such a manner that a significant amount of water can be recovered. The non-condensing gases (CO2 + N2 + rest of O2) from the exhaust fluid are compressed, after additional cooling, and discharged into the atmosphere. If a cheap or waste fuel is available, the steam to be injected into the combustor can be produced in a waste fuel-burning boiler or in conventional coal boiler. In this case the heat exchanger between the turbine and condenser can deliver significant amounts of useful (process or district) heat or / and preheated feedwater for the boiler. The efficiency analysis of this new energy system shows a growth by more than 10 percent points in comparison with the conventional STIG engine, at the same pressure ratio and turbine inlet temperature.


Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


Author(s):  
Adel Ghenaiet

This paper deals with a parametric study and an optimization for the design variables of a high bypass unmixed turbofan equipping commercial aircrafts. The objective of the first part of this study is to highlight the effects of the principal design parameters (bypass ratio, compression ratios, turbine inlet temperature etc..) on the uninstalled performance, in terms of specific thrust and specific fuel consumption. The second part concerns the optimization, aiming at finding the optimum design parameters concurrently minimizing the specific fuel consumption at cruise, and meeting the thrust requirement at takeoff. The cycle analyzer (on-design and off-design) as coupled to the optimization algorithm MMFD by adopting a random multi-starts search strategy is shown to be stable and converging. The predefined requirements and constraints have dictated utilizing an engine with a high-bypass ratio, high-pressure ratio and a moderate turbine inlet temperature. In general, the obtained results compare fairly well with typical data available for an equivalent ‘reference’ engine. This elaborated methodology is shown to be consistent with the conceptual design requirements and accuracy, because, it does not use components’ characteristics, and operates on simplifying assumptions. This present methodology can be readily adapted for other configurations of aero-engines as well, and easily integrated in a multi-disciplinary design approach.


2003 ◽  
Vol 125 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Kam S. Chana ◽  
Terry V. Jones

Detailed experimental investigations have been performed to measure the heat transfer and static pressure distributions on the rotor tip and rotor casing of a gas turbine stage with a shroudless rotor blade. The turbine stage was a modern high pressure Rolls-Royce aero-engine design with stage pressure ratio of 3.2 and nozzle guide vane (ngv) Reynolds number of 2.54E6. Measurements have been taken with and without inlet temperature distortion to the stage. The measurements were taken in the QinetiQ Isentropic Light Piston Facility and aerodynamic and heat transfer measurements are presented from the rotor tip and casing region. A simple two-dimensional model is presented to estimate the heat transfer rate to the rotor tip and casing region as a function of Reynolds number along the gap.


1974 ◽  
Author(s):  
V. V. Uvarov ◽  
V. S. Beknev ◽  
E. A. Manushin

There are two different approaches to develop the gas turbines for power. One can get some megawatts by simple cycle or by more complex cycle units. Both units require very different levels of turbine inlet temperature and pressure ratio for the same unit capacity. Both approaches are discussed. These two approaches lead to different size and efficiencies of gas turbine units for power. Some features of the designing problems of such units are discussed.


Author(s):  
A. F. Carter

During a study of possible gas turbine cycles for a 2000-hp unit for tank propulsion, it has been established that the level of achievable specific fuel consumption (sfc) is principally determined by the combustor inlet temperature. If a regenerative cycle is selected, a particular value of combustor inlet temperature (and hence sfc) can be produced by an extremely large number of combinations of compressor pressure ratio, turbine inlet temperature, and heat exchanger effectiveness. This paper outlines the overall design considerations which led to the selection of a relatively low pressure ratio engine in which the turbine inlet temperature was sufficiently low that blade cooling was not necessary.


Author(s):  
Hideto Moritsuka ◽  
Tomoharu Fujii ◽  
Takeshi Takahashi

The thermal efficiency of gas turbine combined cycle power generation plants increase significantly in accordance with turbine inlet temperature. Gas turbine combined cycle power plants operating at high turbine inlet temperature are popular as a main thermal power station among our electric power companies in Japan. Thus, gas turbine hot gas parts are working under extreme conditions which will strongly affect their lifetime as well as maintenance costs for repaired and replaced parts. To reduce the latter is of major importance to enhance cost effectiveness of the plant. This report describes a gas turbine maintenance management program of main hot gas parts (combustor chambers, transition peices, turbine 1st. stage nozzles and 1st. stage buckets) for management persons of gas turbine combined cycle power stations in order to obtain an optimal gas turbine maintenance schedule considering rotation, repair and replacement or exchange of those parts.


Sign in / Sign up

Export Citation Format

Share Document