CFD Assisted Design of Micro GT Combustor

Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Yakov Goldman ◽  
Valery Sherbaum ◽  
Vitaly Ovcharenko

The work presents the development of a micro-combustor design, where the combustion process was simulated by CFD and tested experimentally. The inner diameter of the first model was 5.5 mm, the exit diameter 2.5 mm, and the length 24.5 mm. The designed heat release was 200W. Some modifications of the microcombustor were studied. Three-dimensional model for combustion simulations was used. The ‘conjugate heat transfer’ methodology, based on a simultaneous solution of the heat transfer equations for gas and combustor walls, coupled with equations for the working fluid, enabled the prediction of the combustor wall temperatures. To check model convergence 2 simulations with different number of cells were carried out. Effect of heat radiation was also studied by the CFD simulation. The fuel is methane and stoichiometric ratio was simulated. Reactive flow calculations were carried out with a two-step reaction. The analysis of the simulated results was based on the obtained velocity profiles, concentration and temperature distributions within the liner. Preliminary simulations showed that the first combustor design had inefficient combustion. The reason was poor mixing of methane and air inside the mixing chamber and deterioration of the combustion by dilution holes. Consequently, the combustor design was modified and simulated. The simulation showed that the modification significantly improved mixing and combustion process and better combustion was provided. Due to complexity associated with performing combustion experiments in such small dimensions, only limited data could be recorded. A small combustor was manufactured and tests and demonstrated its successful operation. Measurements of temperature and optical UV-VIS-IR - emissions at the combustor exit were obtained. The experimental and simulation results are compared and a good qualitative agreement was found between the experiments and the predicted values.

Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


Author(s):  
Iman Goldasteh ◽  
Goodarz Ahmadi ◽  
Andrea Ferro

Particle resuspension is an important source of particulate matter in indoor environments that significantly affects the indoor air quality and could potentially have adverse effect on human health. Earlier efforts to investigate indoor particle resuspension hypothesized that high speed airflow generated at the floor level during the gate cycle is the main cause of particle resuspension. The resuspended particles are then assumed to be dispersed by the airflow in the room, which is impacted by both the ventilation and the occupant movement, leading to increased PM concentration. In this study, a three dimensional model of a room was developed using FLUENT™ CFD package. A RANS approach with the RNG k-ε turbulence model was used for simulating the airflow field in the room for different ventilation conditions. The trajectories of resuspended particulate matter were computed with a Lagrangian method by solving the equations of particle motion. The effect of turbulent dispersion was included with the use of the eddy lifetime model. The resuspension of particles due to gait cycle was estimated and included in the computational model. The dispersion and transport of particles resuspended from flooring as well as particle re-deposition on flooring and walls were simulated. Particle concentrations in the room generated by the resuspension process were evaluated and the results were compared with experimental chamber study data as well as simplified model predictions, and good agreement was found.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


2019 ◽  
Vol 62 (4) ◽  
pp. 263-269
Author(s):  
I. A. Pribytkov ◽  
S. I. Kondrashenko

In this paper, the development features of a single free jet of hightemperature nitrogen interacting with a flat surface were studied. Calculation of the heat exchange process during heating by the attacking jets is very difficult to implement analytically due to complexity of the gas-dynamic processes occurring both in a single jet and in a system of jets interacting with the metal. The computational difficulties are aggravated by the fact that when interacting with the surface the jet as such disappears. The flat (fan) flow interacts with the surface: form, aerodynamic properties and thermal state of the flow strongly differ from those of the original jet. The studies were conducted on the basis of numerical simulation in the FloEFD software and computing complex for multiphysical simulation based on solution of the equations of gas dynamics and heat transfer. The solved system of equations consisted of Navier-Stokes equations, equations of energy and continuity and was supplemented by k – ε turbulence model. A three-dimensional model was developed for simulation, the necessary properties, initial and boundary conditions were specified. In the study of aerodynamics of a single high-temperature jet interacting with the surface, the main defining values were: nitrogen flow rate from the nozzle U0 , nitrogen temperature T, internal diameter of the nozzle d0 , distance from the nozzle section to the surface h, distance from the critical point (point of intersection of the jet axis with the surface) along the flow radius r. Data on the gas velocity decrease as the jet develops due to the loss of initial energy to engage the motionless surrounding gas in motion, is presented. The studies have shown that increase in the initial velocity of gas outflow brings the area of higher velocities closer to the surface both in the jet itself and in the fan jet. This factor contributes to heat transfer intensification. In addition, high speeds increase the total thickness of the fan flow and reduce the thickness of hydrodynamic boundary layer, which increases with distance from the critical point.


Author(s):  
Ece Özkaya ◽  
Selin Aradag ◽  
Sadik Kakac

In this study, three-dimensional computational fluid dynamics (CFD) analyses are performed to assess the thermal-hydraulic characteristics of a commercial Gasketed Plate Heat Exchangers (GPHEx) with 30 degrees of chevron angle (Plate1). The results of CFD analyses are compared with a computer program (ETU HEX) previously developed based on experimental results. Heat transfer plate is scanned using photogrammetric scan method to model GPHEx. CFD model is created as two separate flow zones, one for each of hot and cold domains with a virtual plate. Mass flow inlet and pressure outlet boundary conditions are applied. The working fluid is water. Temperature and pressure distributions are obtained for a Reynolds number range of 700–3400 and total temperature difference and pressure drop values are compared with ETU HEX. A new plate (Plate2) with corrugation pattern using smaller amplitude is designed and analyzed. The thermal properties are in good agreement with experimental data for the commercial plate. For the new plate, the decrease of the amplitude leads to a smaller enlargement factor which causes a low heat transfer rate while the pressure drop remains almost constant.


2020 ◽  
Vol 92 (3) ◽  
pp. 418-427 ◽  
Author(s):  
Nayhel Sharma ◽  
Rakesh Kumar

Purpose The purpose of this paper is to establish a freestream computational fluid dynamics (CFD) model of a three-dimensional non-spinning semi-cylindrical missile model with a single wrap around fin in Mach 2.70-3.00M range and 0° angle of attack, and ultimately establishing itself for future research study. Design/methodology/approach In this study, the behaviour of flow around the fin was investigated using a κ-ϵ turbulence model of second-order of discretization. This was done using a highly structured mesh. Additionally, an inviscid CFD simulation involving the same boundary conditions have also been carried out for comparison. Findings The obtained values of aerodynamic coefficients and pressure contours visualizations are compared against their experimental and computational counterparts. A typical missile aerodynamic characteristic trend can be seen in the current CFD. Practical implications The predicted values of the aerodynamic coefficients of this single fin model have also been compared to those of the full missile body comprising of four fins from the previous research studies, and a similar aerodynamic trend can be seen. Originality/value This study explores the possibility of the use of turbulence modelling in a single fin model of a missile and provides a basic computational model for further understanding the flow behaviour near the fin.


Author(s):  
Stefania Falfari ◽  
Gian Marco Bianchi

In SI engines the ignition process strongly affects the combustion process. Its accurate modelling becomes a key issue for a design-oriented CFD simulation of the combustion process. Different approaches to simulate ignition have been proposed. The common base is decoupling the physics related to the very first ignition phase when a plasma is formed from that of the development of the flame kernel. The critical point of ignition models is related to the capability of representing the effect of ignition system characteristics, the criterion used for flame deposit and the initialisation of the combustion model. This paper aims to present and validates extensively an ignition model suited for CFD calculation of premixed combustion. The ignition model implemented in a customized version of the Kiva 3 code is coupled with ECFM Flamelet combustion model. The ignition model simulates the plasma/kernel expansion based on a lump evaluation of main ignition processes (i.e., breakdown, arc-phase and glow phase). A double switch criterion based on physical and numerical consideration is used to switch to the main combustion model. The Herweg and Maly experimental test case has been used to check the model capability. In particular, two different ignition systems having different amount of electrical energy released during spark discharge are considered. Comparisons with experimental results allowed testing the model with respect to its capability to reproduce the effects of mixture equivalence ratio, mean flow, turbulence and spark energy on flame kernel development as never done before in three-dimensional RANS CFD combustion modelling of premixed flames.


Author(s):  
Dieter Bohn ◽  
Tom Heuer ◽  
Karsten Kusterer

In this paper a three-dimensional conjugate calculation has been performed for a passenger car turbo charger. The scope of this work is to investigate the heat fluxes in the radial compressor which can be strongly influenced by the hot turbine. As a result of this, the compressor efficiency may deteriorate. Consequently, the heat fluxes have to be taken into account for the determination of the efficiency. To overcome this problem a complex three-dimensional model has been developed. It contains the compressor, the oil cooled center housing, and the turbine. 12 operating points have been numerically simulated composed of three different turbine inlet temperatures and four different mass flows. The boundary conditions for the flow and for the outer casing were derived from experimental test data (part II of the paper). Resulting from these conjugate calculations various one-dimensional calculation specifications have been developed. They describe the heat transfer phenomena inside the compressor with the help of a Nusselt number which is a function of an artificial Reynolds number and the turbine inlet temperature.


Sign in / Sign up

Export Citation Format

Share Document