Thermal and Fluid Dynamic Analysis of the Gas Turbine Transition Piece

Author(s):  
J. Arturo Alfaro Ayala ◽  
Armando Gallegos Mun˜oz ◽  
Alejandro Zaleta Aguilar ◽  
Alfonso Campos Amezcua ◽  
Zdzislaw Mazur

This paper presents the thermal and fluid dynamic analysis of the gas turbine transition piece, applying the Finite Volume Method (FVM) through the Computational Fluid Dynamics (CFD). The study is carried out to examine the flow field and distribution of temperatures of the combustion gases along the transition piece and exit mouth, getting profiles and contours of velocity and temperature. This study is important to know the paths of flow and distribution of temperatures of the hot streaks through the transition piece, which impact on cooling system in stator and rotor. Also, these flow field and distribution of temperature have an effect in performance and life of the vanes and blades in the first stage of the turbine, principally by the difference of heat load. The study was carried out in a steady state three-dimensional model to avoid the geometric simplifications, using code FLUENT® version 6.3.26 where the k-ε turbulence model was applied and different boundary conditions in the inlet of the transition piece were considered. To obtain the results, a structured grid about 5.1 millions of cells with second-order upwind scheme and coupled solver was applied. The results show the effect of the velocity and temperature along the transition piece and exit mouth due to the change of the curved section. In the exit mouth of the transition piece is identified a dimensionless peak temperature for about 1.019 in a point near to 68% of the radial edge, while in the circumferential direction the peak temperature is about 1.027 in a point near to 50% of the circumferential edge with symmetry profiles.

Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


Author(s):  
Veeraraghava R Hasti ◽  
Prithwish Kundu ◽  
Sibendu Som ◽  
Jay P Gore

The turbulent flow field in a practical gas turbine combustor is very complex because of the interactions between various flows resulting from components like multiple types of swirlers, dilution holes, and liner effusion cooling holes. Numerical simulations of flows in such complex combustor configurations are challenging. The challenges result from (a) the complexities of the interfaces between multiple three-dimensional shear layers, (b) the need for proper treatment of a large number of tiny effusion holes with multiple angles, and (c) the requirements for fast turnaround times in support of engineering design optimization. Both the Reynolds averaged Navier–Stokes simulation (RANS) and the large eddy simulation (LES) for the practical combustor geometry are considered. An autonomous meshing using the cut-cell Cartesian method and adaptive mesh refinement (AMR) is demonstrated for the first time to simulate the flow in a practical combustor geometry. The numerical studies include a set of computations of flows under a prescribed pressure drop across the passage of interest and another set of computations with all passages open with a specified total flow rate at the plenum inlet and the pressure at the exit. For both sets, the results of the RANS and the LES flow computations agree with each other and with the corresponding measurements. The results from the high-resolution LES simulations are utilized to gain fundamental insights into the complex turbulent flow field by examining the profiles of the velocity, the vorticity, and the turbulent kinetic energy. The dynamics of the turbulent structures are well captured in the results of the LES simulations.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marco Savini

The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a 3-D Navier-Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field has been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development is inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass averaged losses shows a significant performance improvement in the contoured cascade. This has to be ascribed not only to lower secondary losses but also to a reduction of the profile losses.


1986 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

Gas turbine engines operating in dusty environments are exposed to erosion and performance deterioration. In order to provide the basis for calculating the erosion and performance deterioration of turbines using pulverized coal, an investigation is undertaken to determine the three dimensional particle trajectories in a two stage turbine. The solution takes into account the influence of the variation in the three dimensional flow field. The change in particle momentum due to their collision with the turbine blades and casings is modeled using empirical equations derived from experimental Laser Doppler Velocimetry (LDV) measurements. The results show the three dimensional trajectory characteristics of the solid particles relative to the turbine blades. The results also show that the particle distribution in the flow field are determined by particle-blade impacts. The results obtained from this study indicate the turbine blade locations which are subjected to more blade impacts and hence more erosion damage.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shoushuo Wang ◽  
Zhigang Du ◽  
Fangtong Jiao ◽  
Libo Yang ◽  
Yudan Ni

This study aims to investigate the impact of the urban undersea tunnel longitudinal slope on the visual characteristics of drivers. 20 drivers were enrolled to conduct the real vehicle test of the urban undersea tunnel. First, the data of average fixation time and visual lobe were collected by an eye tracker. The differential significance was tested using the one-way repeated measures analysis of variance (ANOVA). Then, the difference between the up-and-down slope (direction) factor and the longitudinal slope (percent) factor on the two indexes were analyzed using the two-way repeated measures ANOVA. Second, by constructing a Lorentz model, the impact of the longitudinal slope on the average fixation time and the visual lobe were analyzed. Besides, a three-dimensional model of the longitudinal slope, average fixation time, and visual lobe was quantified. The results showed that the average fixation time and visual lobe under different longitudinal slopes markedly differed when driving on the uphill and downhill sections. The average fixation time and visual lobe under two factors were markedly different. Moreover, with an increase in the longitudinal slope, the average fixation time exhibited a trend of increasing first then decreasing; the visual lobe exhibited a trend of decreasing first and then increasing. The average fixation time reached the minimum and maximum value when the slope was 2.15% and 4.0%, whereas the visual lobe reached the maximum and minimum value when the slope was 2.88% and 4.0%. Overall, the longitudinal slope exerted a great impact on the visual load of the driver.


2020 ◽  
Vol 7 (3) ◽  
pp. 597-610 ◽  
Author(s):  
Tian Zhang ◽  
Deji Jing ◽  
Shaocheng Ge ◽  
Jiren Wang ◽  
Xiangxi Meng ◽  
...  

Abstract To simulate the transonic atomization jet process in Laval nozzles, to test the law of droplet atomization and distribution, to find a method of supersonic atomization for dust-removing nozzles, and to improve nozzle efficiency, the finite element method has been used in this study based on the COMSOL computational fluid dynamics module. The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric, three-dimensional and three-dimensional symmetric models, but it can be calculated with the transformation dimension method, which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model. The visualization of this complex process, which is difficult to measure and analyze experimentally, was realized in this study. The physical process, macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation. The rationality of the simulation was verified by experiments. A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided, and a numerical platform for the study of supersonic atomization dust removal has been established.


1982 ◽  
Vol 6 (6) ◽  
pp. 368-375 ◽  
Author(s):  
F. Boysan ◽  
W.H. Ayers ◽  
J. Swithenbank ◽  
Z. Pan

Sign in / Sign up

Export Citation Format

Share Document