Injection of Liquid Kerosene Into a High-Pressure Subsonic Air Crossflow From Normal Temperature to Elevated Temperature

Author(s):  
Lin Li ◽  
Yuzhen Lin ◽  
Xin Xue ◽  
Wei Gao ◽  
Chih-Jen Sung

In the present work, injection of liquid kerosene into a high-pressure subsonic air crossflow was investigated experimentally. Tests were conducted at air pressures up to 2.0 MPa and at air temperatures from normal temperature to elevated temperature. Liquid kerosene was injected at room temperature through a 0.5 mm diameter plain orifice. Schlieren imaging technique was used for jet structure visualization, from which the jet penetration trajectory was determined by the image processing. For the conditions tested, a correlation of jet penetration trajectory was developed, with momentum flux ratio, Weber number and crossflow temperature ratio as independent variables. Upper surface trajectories of kerosene spray under different test conditions were compared. Experimental and analytical results showed that the penetration trajectory of liquid kerosene under higher air temperature was greater than that under normal temperature, while momentum ratios were the same.

Author(s):  
Robert W. Roberson

The use of cryo-techniques for the preparation of biological specimens in electron microscopy has led to superior preservation of ultrastructural detail. Although these techniques have obvious advantages, a critical limitation is that only 10-40 μm thick cells and tissue layers can be frozen without the formation of distorting ice crystals. However, thicker samples (600 μm) may be frozen well by rapid freezing under high-pressure (2,100 bar). To date, most work using cryo-techniques on fungi have been confined to examining small, thin-walled structures. High-pressure freezing and freeze substitution are used here to analysis pre-germination stages of specialized, sexual spores (teliospores) of the plant pathogenic fungus Gymnosporangium clavipes C & P.Dormant teliospores were incubated in drops of water at room temperature (25°C) to break dormancy and stimulate germination. Spores were collected at approximately 30 min intervals after hydration so that early cytological changes associated with spore germination could be monitored. Prior to high-pressure freezing, the samples were incubated for 5-10 min in a 20% dextran solution for added cryoprotection during freezing. Forty to 50 spores were placed in specimen cups and holders and immediately frozen at high pressure using the Balzers HPM 010 apparatus.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Alloy Digest ◽  
1988 ◽  
Vol 37 (12) ◽  

Abstract RMI 6A1-4V ELI is an alpha-beta type of titanium-base alloy that can be strengthened by age hardening. In the mill-annealed condition it has a guaranteed minimum room-temperature yield strength of 120,000 psi and can be increased to as much as 160,000 psi by solution treating and aging. This alloy may be used for high-pressure cryogenic vessels down to 320 F. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-89. Producer or source: RMI Company.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


2021 ◽  
pp. 2001936
Author(s):  
Jun‐Heng Fu ◽  
Tian‐Ying Liu ◽  
Yuntao Cui ◽  
Jing Liu

1977 ◽  
Vol 4 (2) ◽  
pp. 153-160 ◽  
Author(s):  
T. O'D. Hanley ◽  
B. Michel

Ice formation under controlled conditions was studied in a cold room using a cylindrical steel tank 120 cm in diameter and 76 cm deep. Paddles turned by a variable speed motor moved the water about the axis of the tank. Twenty-one thermistors were used to record temperatures above and below the surface of the water. Ice was allowed to form with the cold room temperature held at −2 °C, −5 °C, −10 °C, and −20 °C and with water speeds (measured 4 cm from the tank wall) from 0 to 73 cm/s.At zero water speed ice formed first as needles randomly oriented over the surface. With flowing water, border ice width increased linearly with time, but independently of water speed. The rate of increase of the border width w fits the equation dw/dt = (4/9)|Ta|0.68 where Ta is the Celsius air temperature.Frazil was never observed at water speeds less than 24 cm/s, but was always formed at this or greater speeds, regardless of cold room temperature. The volume of slush accumulated was greater at greater water speeds and at colder air temperatures. Observed slush volumes are compared with semiempirical values of the ice mass obtained from theoretical equations. The data suggest that growth of ice crystals began when the water was supercooled by approximately 0.02 °C.


2021 ◽  
Vol 103 (21) ◽  
Author(s):  
William Lafargue-Dit-Hauret ◽  
Daniel Braithwaite ◽  
Andrew D. Huxley ◽  
Tsuyoshi Kimura ◽  
Andres Saúl ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2011 ◽  
Vol 261-263 ◽  
pp. 212-216
Author(s):  
Jun Lin Tao ◽  
Li Bo Qin ◽  
Kui Li ◽  
Bin Jia

Using micro-wave heating method, the previous disadvantages of heating slowly and non-uniform are broken through. And plain concrete high temperature loading experiment system is composed of the method and material experiment machine. Many experiments of self-made concrete are carried out from room temperature to 600°C by this system. The strength and critical strain of concrete with temperature are obtained, and through analysis of the compressive stress-strain curves under different temperature, the constitutive relationship is established. The result shows that this constitutive relationship is greatly agrees with experiment. Meanwhile, the phenomenon is analyzed and explained in the progress of experiment.


Sign in / Sign up

Export Citation Format

Share Document