Experimental and Numerical Investigation of the Flow Field in the Radial Inlet of a Centrifugal Compressor

Author(s):  
Fenghui Han ◽  
Datong Qi ◽  
Jiajian Tan ◽  
Li Wang ◽  
Yijun Mao

This paper presents an experimental and numerical study of the flow field in a typical geometry of a centrifugal compressor radial inlet. A five-hole probe system, which makes the probe calibration and the data acquisition automatically controlled by computer, was developed and used to measure the pressure, velocity and flow angle distributions inside the radial inlet. The testing portion consists of the entrance and exit of the radial inlet, the outlet section of the suction nozzle and the exit of the plenum, including 46 sampling holes and 923 measuring points. In parallel with the experiment, a computational analysis was also carried out to simulate the internal flow of the radial inlet with a commercial CFD Code. The numerical results are compared with the experimental data. It shows a good agreement between CFD and the measurement on most sections. Based on the experiment and simulation, this study reveals the detailed flow conditions in a radial inlet, which helps to figure out how the complex flow pattern in a radial inlet forms and develops as well as the influences on the downstream components. It yields an improved understanding of the principle of flow phenomena in radial inlets, and gives recommendations for optimizing the structure design of the radial inlet of centrifugal compressors.

1991 ◽  
Vol 113 (4) ◽  
pp. 670-679 ◽  
Author(s):  
J. R. Fagan ◽  
S. Fleeter

A series of experiments are performed to investigate and quantify the three-dimensional mean flow field in centrifugal compressor flow passages and to evaluate contemporary internal flow models. The experiments include the acquisition and analysis of LDV data in the impeller passages of a low-speed moderate-scale research mixed-flow centrifugal compressor operating at its design point. Predictions from a viscous internal flow model are then correlated with these data. The LDV data show the traditional jet-wake structure observed in many centrifugal compressors, with the wake observed along the shroud 70 percent of the length from the pressure to suction surface. The viscous model predicts the major flow phenomena. However, the correlations of the viscous predictions with the LDV data were poor.


2013 ◽  
Vol 572 ◽  
pp. 319-322
Author(s):  
Dong Yue Qu ◽  
Zhong Yuan Guo ◽  
Chong Liu

The instability flow in the control valve often lead to abnormal vibration, the valve wear and the valve stem destruction, also lead to pressure loss. The flow in the control valve show complex flow regime distribution and variation, it is a typical unsteady flow. Therefore, it is necessary to theoretical calculation and qualitative analyses the flow field of valve by the numerical simulation method. In this paper, we study on the axial force of valve stem that caused by the fluid pulsation pressure. Establishing the flow field model of the control valve, generating the computational grid through the pre-processor, using the CFD software to do discretized and solved, getting visualization graphics of the internal flow field. Study the changes of the flow characteristics according to different pressure ratio, getting the variation characteristic of axial force. Provide the basis for subsequent optimization and design of the low vibration control valve.


Author(s):  
John Robert Fagan ◽  
Sanford Fleeter

A series of experiments are performed to investigate and quantify the three-dimensional mean flow field in centrifugal compressor flow passages and to evaluate contemporary internal flow models. The experiments include the acquisition and analysis of LDV data in the impeller passages of a low speed moderate scale research mixed-flow centrifugal compressor operating at its design point. Predictions from a viscous internal flow model are then correlated with these data. The LDV data show the traditional jet-wake structure observed in many centrifugal compressors, with the wake observed along the shroud 70% of the length from the pressure to suction surface. The viscous model predicts the major flow phenomena. However, the correlations of the viscous predictions with the LDV data were poor.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


Author(s):  
Takaya Onishi ◽  
H. Sato ◽  
M. Hayakawa ◽  
Y. Kawata

Propeller fans are required not only to have high performance but also to be extremely quiet. The internal flow field of ventilation propeller fans is even more complicated because they usually have a very peculiar configuration with protruding blades upstream. Thus, many kinds of internal vortices yield which cause noise and their cause and countermeasures are needed to be clarified. The purposes of this paper are to visualize the internal flow of the propeller fan from the static and rotating frame of reference. The internal flow visualization measured from the static frame gives approximately the scale of the tip vortex. The visualization from the rotating coordinate system yields a better understanding of the flow phenomena occurring at the specific blade. The experiment is implemented by using a small camera mounted on the shaft of the fan and rotated it to capture the behavior of the vortices using a laser light sheet to irradiate the blade surface. Hence, the flow field of the specific blade could be understood to some extent. The visualized results are compared with the CFD results and these results show a similar tendency about the generation point and developing process of the tip vortex. In addition, it is found that the noise measurement result is relevant to the effect of tip vortex from the visualization result.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yicheng Sun ◽  
Yufan Fu ◽  
Baohui Chen ◽  
Jiaxing Lu ◽  
Wanquan Deng

In order to study the internal flow characteristics and external droplet velocity distribution characteristics of the swirl nozzle, the following methods were used: numerical simulations were used to study the internal flow characteristics of a swirl nozzle and phase Doppler particle velocimetry was used to determine the corresponding external droplet velocity distribution under medium and low pressure conditions. The distributions of pressure and water velocity inside the nozzle were obtained. Meanwhile, the velocities of droplets outside the nozzle in different sections were discussed. The results show that the flow rate in the swirl nozzle increases with the increase in inlet pressure, and the local pressure in the region decreases because of the excessive velocity at the internal outlet section of the swirl nozzle, resulting in cavitation. The experimental results show that under an external flow field, the minimum droplet velocity occurs in the axial direction; starting from the axis, the velocity first increases and then decreases along the radial direction. Swirling motion inside the nozzle and velocity variations in the external flow field occur under medium and low pressure conditions. The relationship between the inlet pressure and the distributions of water droplets’ velocities was established, which provides a reference for the research and development of the swirl nozzle.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


Author(s):  
Dilip Prasad ◽  
Gavin J. Hendricks

The flow field in a low-speed turbine stage with a uniform inlet total pressure is studied numerically. A circular hot streak is superposed on the vane inlet flow. In agreement with previous experimental and numerical work, it is observed that while the streak passes through the vane unaltered, significant radial transport occurs in the rotor. Furthermore, despite the unsteady nature of the flow field, the steady theory of Hawthorne (1974) is found to predict the radial transport velocity well. Making use of this theory, it is shown that the secondary vorticity in the rotor may be attributed to the effects of density stratification, the spatial variation of the vane exit flow angle and the relative eddy. It then follows that the extent of radial transport in the rotor may be influenced by altering the vane exit flow angle distribution. The present study examines one means by which this may be effected, viz., varying the vane twist across the span. It is shown that a “reverse” twist, wherein the flow angle at the vane exit is larger near the tip than it is at mid-span reduces the secondary flow (and consequently, radial transport) in the blade passage. On the other hand, “positive” twist, in which the vane exit flow angle decreases with span is found to markedly worsen the radial transport in the blade. It is to be noted that varying the vane twist is but one method to obtain the desired exit flow angle; possibilities for altering other aspects of the vane geometry also exist.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097490
Author(s):  
Fenghui Han ◽  
Zhe Wang ◽  
Yijun Mao ◽  
Jiajian Tan ◽  
Wenhua Li

Inlet chambers (IC) are the typical upstream component of centrifugal compressors, and inlet guide vanes in the IC have a great impact on its internal flow and aerodynamic loss, which will significantly influence the performance of the downstream compressor stages. In this paper, an experimental study was carried out on the flow characteristics inside a radial IC of an industrial centrifugal compressor, including five testing sections and 968 measuring points for two schemes with and without guide vanes. Detailed distributions of flow parameters on each section were obtained as well as the overall performance of the radial IC, and the causes of the flow loss inside the IC and the non-uniformity of flow parameters at the outlet section were investigated. Besides, numerical simulations were performed to further analyze the flow characteristics inside the radial IC. The experimental and numerical results indicate that, in the scheme without guide vanes, sudden expansions in the spiral channel and flow separations in the annular convergence channel are the major sources of flow loss and distortions generated in the radial IC; while in the scheme with guide vanes, the flow impacts, separations and wakes caused by the inappropriate design of guide vanes are the main reasons for the flow loss of the IC itself and the uneven flow distributions at the IC outlet.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


Sign in / Sign up

Export Citation Format

Share Document