Off-Line Temperature Profiling Utilising Phosphorescent Thermal History Paints and Coatings

Author(s):  
J. P. Feist ◽  
S. Karmaker Biswas ◽  
C. Pilgrim ◽  
P. Y. Sollazzo ◽  
S. Berthier

Temperature profiling of components in gas turbines is of increasing importance as engineers drive to increase firing temperatures and optimise component’s cooling requirements in order to increase efficiency and lower CO2 emissions. However, on-line temperature measurements and, particularly, temperature profiling are difficult, sometimes impossible, to perform due to inaccessibility of the components. A desirable alternative would be to record the exposure temperature in such a way that it can be determined later, off-line. The commercially available Thermal Paints are toxic in nature and come with a range of technical disadvantages such as subjective readout and limited durability. This paper proposes a novel alternative measurement technique which the authors call Thermal History Paints and Thermal History Coatings. These can be particularly useful in the design process, but further could provide benefits in the maintenance area where hotspots which occurred during operation can be detected during maintenance intervals when the engine is at ambient temperature. This novel temperature profiling technique uses optical active ions in a ceramic host material. When these ions are excited by light they start to phosphoresce. The host material undergoes irreversible changes when exposed to elevated temperatures and since these changes are on the atomic level they influence the phosphorescent properties such as the life time decay of the phosphorescence. The changes in phosphorescence can be related to temperature through calibration such that in-situ analysis will return the temperature experienced by the coating. A major benefit of this technique is in the automated interpretation of the coatings. An electronic instrument is used to measure the phosphorescence signal eliminating the need for a specialist interpreter and thus increasing readout speed. This paper reviews results from temperature measurements made with a water based paint for the temperature range 100°C to 800°C in controlled conditions. Repeatability of the tests and errors will be discussed. Further, some measurements are carried out using an electronic hand-held interrogation device which can scan a component surface and provide a spatial resolution of below 3mm. The instrument enables mobile measurements outside of laboratory conditions. Further a robust Thermal History Coating is introduced demonstrating the capability of the coating to withstand long term exposures. The coating is based on Thermal Barrier Coating architecture with a high temperature bondcoat and deposited using an air plasma spray process to manufacture a reliable long lasting coating. Such a coating could be employed over the life of the component to provide critical temperature information at regular maintenance intervals for example indicating hot spots on engine parts.

2015 ◽  
Vol 137 (10) ◽  
Author(s):  
J. P. Feist ◽  
S. Karmakar Biswas ◽  
C. C. Pilgrim ◽  
P. Y. Sollazzo ◽  
S. Berthier

Temperature profiling of components in gas turbines is of increasing importance as engineers drive to increase firing temperatures and optimize component’s cooling requirements in order to increase efficiency and lower CO2 emissions. However, on-line temperature measurements and, particularly, temperature profiling are difficult, sometimes impossible, to perform due to inaccessibility of the components. A desirable alternative would be to record the exposure temperature in such a way that it can be determined later, off-line. The commercially available thermal paints are toxic in nature and come with a range of technical disadvantages such as subjective readout and limited durability. This paper proposes a novel alternative measurement technique which the authors call thermal history paints and thermal history coatings. These can be particularly useful in the design process, but further could provide benefits in the maintenance area where hotspots which occurred during operation can be detected during maintenance intervals when the engine is at ambient temperature. This novel temperature profiling technique uses optical active ions in a ceramic host material. When these ions are excited by light they start to phosphoresce. The host material undergoes irreversible changes when exposed to elevated temperatures and since these changes are on the atomic level they influence the phosphorescent properties such as the life time decay of the phosphorescence. The changes in phosphorescence can be related to temperature through calibration such that in situ analysis will return the temperature experienced by the coating. A major benefit of this technique is in the automated interpretation of the coatings. An electronic instrument is used to measure the phosphorescence signal eliminating the need for a specialist interpreter, and thus increasing readout speed. This paper reviews results from temperature measurements made with a water-based paint for the temperature range 100–800 °C in controlled conditions. Repeatability of the tests and errors are discussed. Further, some measurements are carried out using an electronic hand-held interrogation device which can scan a component surface and provide a spatial resolution of below 3 mm. The instrument enables mobile measurements outside of laboratory conditions. Further, a robust thermal history coating is introduced demonstrating the capability of the coating to withstand long term exposures. The coating is based on thermal barrier coating (TBC) architecture with a high temperature bondcoat and deposited using an air plasma spray process to manufacture a reliable long lasting coating. Such a coating could be employed over the life of the component to provide critical temperature information at regular maintenance intervals for example indicating hot spots on engine parts.


Author(s):  
A. L. Heyes ◽  
A. Rabhiou ◽  
J. P. Feist ◽  
A. M. Kempf

The ability to measure temperature in extreme environments such as the hot sections of gas turbines is critically important. Several on-line techniques exist but it is often not possible to measure in real-time the temperature of all surfaces of interest. Indeed, some surfaces are so inaccessible as to require complex, costly and intrusive instrumentation for on-line temperature measurement. Here, off-line sensors, also called thermal history sensors, can be used to record the temperatures to which they are exposed, in such a way that they can be extracted later off-line, at room temperature. Probably the best-known types of thermal history sensor are the colour changing thermal paints, that are widely used in gas turbine development. These have been valuable tools of engine developers for many years, but their use presents a number of challenges so that alternatives would be welcome. This paper reports the latest developments of a thermal history sensor based on phosphors that undergo permanent changes in their luminescence properties when exposed to high temperatures. Such thermal history sensors have several advantages over and address many of the shortcomings of existing sensors. The paper contains details of the application of a phosphor-based temperature indicating paint based on Y2SiO5:Tb suspended in a chemical binder. The binder was found to influence the optical properties of the phosphor but despite this, a viable sensor paint for temperatures in the range 400°C to 900°C was formed. A thermal history coating was installed using a thermal barrier coating architecture, applied on various components of a Royce-Rolls Viper 201 engine owned by STS and operated for a number of hours at Cranfield University. Post-operation analysis revealed a temperature distribution on the surfaces/components and enabled hotspots to be identified. Overall the results suggest that phosphor-based temperature indicating paints have the potential to surpass the capability of existing paints.


Author(s):  
Marta Ferran-Marqués ◽  
Silvia Araguás-Rodríguez ◽  
Christopher Pilgrim ◽  
Kang Lee ◽  
Joël Larose ◽  
...  

Abstract To improve the efficiency of gas turbines, the turbine inlet temperature needs to be increased. The highest temperature in the gas turbine cycle takes place at the exit of the combustion chamber and it is limited by the maximum temperature turbine blades, vanes and discs can withstand. A combination of advanced cooling designs and Thermal Barrier Coatings (TBCs) are used to achieve material surface temperatures of up to 1200°C. However, further temperature increases and materials that can withstand the harsh temperatures are required for next-generation engines. Research is underway to develop next-generation CMCs with 1480 °C temperature capability, but accurate data regarding the thermal load on the components must be well understood to ensure the component life and performance. However, temperature data is very difficult to accurately and reliably measure because the turbine rotates at high speed, the temperature rises very quickly with engine startup and the blades operate under harsh environments. At the operating temperature range of CMCs, typically platinum thermocouples are used, however, this material is incompatible with silicon carbide CMCs. Other temperature techniques such as infrared cameras and pyrometry need optical access and the results are affected by changes in emissivity that can take place during operation. Offline techniques, in which the peak temperature information is stored and read-out later, overcome the need for optical access during operation. However, the presently available techniques, such as thermal paint and thermal crystals cannot measure above ∼1400°C. Therefore, a new measurement technique is required to acquire temperature data at extreme temperatures. To meet this challenge, Sensor Coating Systems (SCS) is focused on the development of Thermal History Coatings (THC) that measure temperature profiles in the 900–1600 °C range. THC are oxide ceramics deposited via air plasma spraying process. This innovative temperature profiling technique uses optically active ions in a ceramic host material that start to phosphoresce when excited by light. After being exposed to high temperatures the host material irreversibly changes at the atomic level affecting the phosphorescence properties which are then related to temperature through calibration. This two-part paper describes the THC technology and demonstrates its capabilities for high-temperature applications. In this second part, the THC is implemented on rig components for a demonstration on two separate case studies for the first time. In one test, the THC was implemented on a burner rig assembly on metallic alloys instrumented with thermocouples, provided by Pratt & Whitney Canada. In another test, the THC was applied to environmental barrier coatings developed by NASA, as part of a ceramic-matrix-composite system and heat-treated up to 1500°C. The results indicate the THC could provide a unique capability for measuring high temperatures on current metallic alloys as well as next-generation materials.


2012 ◽  
Vol 1519 ◽  
Author(s):  
JiaPeng Xu ◽  
Vinod Sarin ◽  
Soumendra Basu

ABSTRACTCurrently, ceramics are being used under increasingly demanding environments. These materials have to exhibit phase stability and resist chemical attack during service. This research involves the study of the high-temperature stability of ceramic materials in gas turbines. SiC/SiC ceramic matrix composites (CMCs) are being increasingly used in the hot-sections of gas turbines, especially for aerospace applications. These CMCs are prone to recession of their surface if exposed to a flow of high-velocity water vapor, and to hot-corrosion when exposed to molten alkali salts. The objective of this investigation was the development of a hybrid system containing an environmental barrier coating (EBC) for protection of the CMC from chemical attack and a thermal barrier coating (TBC) that allows a steep temperature gradient across it to lower the temperature of the CMC for increased lifetimes. The EBC used was a functionally graded mullite (3Al2O3∙2SiO2) coating deposited by chemical vapor deposition (CVD), while the TBC layer was yttria-stabilized zirconia (YSZ) deposited by air plasma spray (APS). The stability of this system was investigated, via adhesion between the two coating layers and the substrate, the physical and chemical stability of each layer at high temperature, and the performance under severe thermal shock and exposure to hot corrosion.


2007 ◽  
Vol 353-358 ◽  
pp. 1802-1805
Author(s):  
Masakazu Okazaki ◽  
T. Ozaki

Elastic modulus of air plasma sprayed (APSed) YSZ (; ZrO2 stabilized by 8 wt. pct. Y2O3) top coat specimen, which is frequently used for thermal barrier coating (TBC) system for advanced gas turbines, was measured by employing the macro-, micro-, and nano-indentation methods. The elastic modulus was measured, following the Oliver-Pharr method. It was shown that the elastic modulus of the YSZ, as well as the microstructure, was significantly influenced by the spraying conditions employed. Especially the size of ceramic powders used was found to have the most pronounced effect. It was also shown that the elastic modulus revealed significant size effect: that is, there were significant differences in elastic modulus measured by the instruments on the macro-, micro-, and nano-levels. This size effect was discussed, correlating with some relating phenomena: crackings, sink-in, pile-up and spalling; as well as with the characteristic microstructures of the sprayed top coat.


2021 ◽  
Vol 106 ◽  
pp. 90-96
Author(s):  
R. Keshavamurthy ◽  
B.E. Naveena ◽  
T. Ramesh ◽  
N.K. Shashikumara

Thermal Barrier Coating are highly advanced material systems usually applied to metallic surfaces, such as gas turbine or aero-engine parts, operating at elevated temperatures. They have ceramic and metallic multilayers which have been widely used in the aeroturbine engines to increase the life of metallic components and turbine efficiency. Many different types of coatings are used to protect variety of engineering materials from wear, corrosion and erosion. Of all these, TBC’s play a vital role in providing thermal insulation and protect the material from high temperature environment. In this paper Lanthanum Zirconate (La2Zr2O7) is used as a coating material which is phase-stable to its melting point, Lanthanum Zirconate is a promising material which exhibit lower thermal conductivity and higher thermal stability compared to other TBC system. High quality Lanthanum Zirconate based TBC is developed by plasma spray technique on superalloys. In the present investigation porosity, microstructure, hardness and bond strength of the developed TBC’s were characterized and significant parameters of plasma spray process were identified.


2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Zheng Yan ◽  
Haoran Peng ◽  
Kang Yuan ◽  
Xin Zhang

Yb2O3-Gd2O3-Y2O3 co-doped ZrO2 (YGYZ) is considered to be a promising material in thermal barrier coating (TBC) applications. In this study, 2Yb2O3–2Gd2O3–6Y2O3–90ZrO2 (mol.%) (10YGYZ) feedstock candidates for air plasma spraying (APS) were prepared by calcination of agglomerated powders at 1100, 1200, 1300, 1400, and 1500 °C for 3 h, respectively. Incomplete solid solution was observed in calcined powders at 1100, 1200 and 1300 °C, and the 1500 °C calcined powder exhibited poor flowability due to intense sintering effect. The 1400 °C calcined powders were eventually determined to be the optimized feedstock for proper phase structure (cubic phase), great flowability, suitable apparent density and particle size distribution, etc. 10YGYZ TBCs with the optimized feedstock were prepared by APS, exhibiting pure c phase and good chemical uniformity. Controllable preparation of coatings with different porosity (i.e., 7%–9% and 12%–14%) was realized by stand-off distance adjustment.


Sign in / Sign up

Export Citation Format

Share Document