Thermodynamics Cycle Analysis, Pressure Loss and Heat Transfer Assessment of a Recuperative System for Aero Engines

Author(s):  
A. Goulas ◽  
S. Donnerhack ◽  
M. Flouros ◽  
D. Misirlis ◽  
Z. Vlahostergios ◽  
...  

Aiming in the direction of designing more efficient aero engines, various concepts have been developed in recent years, among which is the concept of an intercooled and recuperative aero engine. Particularly in the area of recuperation, MTU Aero Engines has been driving research activities in the last decade. This concept is based on the use of a system of heat exchangers mounted inside the hot-gas exhaust nozzle (recuperator). Through the operation of the system of heat exchangers, the heat from the exhaust gas, downstream the LP turbine of the jet engine is driven back to the combustion chamber. Thus, the preheated air enters the engine combustion chamber with increased enthalpy, providing improved combustion and by consequence, increased fuel economy and low-level emissions. If additionally an intercooler is placed between the compressor stages of the aero engine, the compressed air is then cooled by the intercooler thus, less compression work is required to reach the compressor target pressure. In this paper an overall assessment of the system is presented with particular focus on the recuperative system and the heat exchangers mounted into the aero engine’s exhaust nozzle. The herein presented results were based on the combined use of CFD computations, experimental measurements and thermodynamic cycle analysis. They focus on the effects of total pressure losses and heat exchanger efficiency on the aero engine performance especially the engine’s overall efficiency and the specific fuel consumption. More specifically, two different hot-gas exhaust nozzle configurations incorporating modifications in the system of heat exchangers are examined. The results show that significant improvements can be achieved in overall efficiency and specific fuel consumption hence contributing into the reduction of CO2 and NOx emissions. The design of a more sophisticated recuperation system can lead to further improvements in the aero engine efficiency in the reduction of fuel consumption. This work is part of the European funded research program LEMCOTEC (Low Emissions Core engine Technologies).

2021 ◽  
Author(s):  
Emmanouil Alexiou ◽  
Zinon Vlahostergios ◽  
Christina Salpingidou ◽  
Fabian Donus ◽  
Dimitrios Misirlis ◽  
...  

Abstract Aiming in the direction of designing high efficiency aircraft engines, various concepts have been developed in recent years, among which is the concept of the intercooled and recuperative aero engine (IRA engine). This concept is based on the use of a system of heat exchangers (recuperator) mounted inside the hot-gas exhaust nozzle, as well as a system of heat exchangers (intercooler) mounted between the intermittent-pressure compressor (IPC) and the high-pressure compressor (HPC) compressor modules. Through the operation of the system of recuperator module, the heat from the exhaust gas, downstream the LP turbine of the aero engine is driven back to the combustion chamber. Thus, the preheated air enters the engine combustion chamber with increased enthalpy, providing higher combustion efficiency and consequently reduced thrust specific fuel consumption (TSFC) and low-level emissions. Additionally, by integrating the intercooler module between the compressor stages of the aero engine, the compressed air is cooled, leading to less required compression work to reach the compressor target pressure and significant improvements can be achieved in the overall engine efficiency and the specific fuel consumption hence, contributing to the reduction of CO2 and NOx emissions. The present work is focused on the optimization of the performance characteristics of an intercooler specifically designed for aero engine applications, working cooperatively with a novel design recuperator module targeting the reduction of specific fuel consumption and taking into consideration aero engine geometrical constraints and limitations for two separate operating scenarios. The intercooler design was based on the elliptically profiled tubular heat exchanger which was developed and invented by MTU Aero Engines AG. For the specific fuel consumption investigations, the Intercooled Recuperated Aero engine cycle that combines both intercooling and recuperation was considered. The optimization was performed with the development of an intercooler surrogate model, capable to incorporate major geometrical features. A large number of intercooler design scenarios was assessed, in which additional design criteria and constraints were applied. Thus, a significantly large intercooler design space was covered resulting to the identification of feasible designs providing beneficial effect on the Intercooled Recuperated Aero engine performance leading to reduced specific fuel consumption, reduced weight and extended aircraft range.


Author(s):  
C Salpingidou ◽  
D Misirlis ◽  
Z Vlahostergios ◽  
M Flouros ◽  
F Donus ◽  
...  

The development of more efficient aero engines is becoming a matter of great importance due to the need for pollutant emissions reduction (e.g. CO2, NOx). Toward this direction, two of the most promising aero engine architectures that have been proposed are the ultrahigh by-pass geared turbofan and the open rotor configurations, both of which are targeting the low thrust-specific fuel consumption and reduced NOx production. In the current study, investigations are performed in order to determine the improvements in thrust-specific fuel consumption for these configurations. More specifically, on the basic geared turbofan and open rotor configurations an intercooler and a recuperator are implemented between the compressors and the exhaust nozzle, respectively. The intercooler is installed in order to reduce the high pressure compressor work demand, while the recuperator is used in order to preheat the compressor discharge air by exploiting the otherwise wasted increased enthalpy content of the exhaust hot gas. The recuperator consists of elliptically profiled tubes and its design is based on the innovative tubular heat exchanger core arrangement that has been invented and developed by MTU Aero engines AG. The intercooled recuperative geared turbofan is evaluated against a nonintercooled recuperative geared turbofan, while the intercooled recuperative open rotor is evaluated against a nonintercooled recuperative open rotor. The results showed that the implementation of intercoolers and recuperators can further improve specific fuel consumption and can also lead to NOx emission reduction.


Author(s):  
Christina Salpingidou ◽  
Dimitrios Misirlis ◽  
Zinon Vlahostergios ◽  
Michael Flouros ◽  
Fabian Donus ◽  
...  

The present work is focused on the optimization of the performance characteristics of a recuperator specifically designed for aero engine applications, targeting the reduction of specific fuel consumption and taking into consideration aero engine geometrical constraints and limitations. The recuperator design was based on the elliptically profiled tubular heat exchanger which was developed and invented by MTU Aero Engines AG. For the specific fuel consumption investigations the Intercooled Recuperated Aero engine cycle, combining both intercooling and recuperation, was considered. The optimization was performed with the development of a recuperator surrogate model, capable to incorporate major recuperator geometrical features. A large number of recuperator design scenarios was assessed, in which additional design criteria and constraints were applied. Thus, a significantly large recuperator design space was covered resulting to the identification of feasible recuperator designs providing beneficial effect on the Intercooled Recuperated Aero engine leading to reduced specific fuel consumption and weight.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
Adel Ghenaiet

This paper presents an evolutionary approach as the optimization framework to design for the optimal performance of a high-bypass unmixed turbofan to match with the power requirements of a commercial aircraft. The parametric analysis had the objective to highlight the effects of the principal design parameters on the propulsive performance in terms of specific fuel consumption and specific thrust. The design optimization procedure based on the genetic algorithm PIKAIA coupled to the developed engine performance analyzer (on-design and off-design) aimed at finding the propulsion cycle parameters minimizing the specific fuel consumption, while meeting the required thrusts in cruise and takeoff and the restrictions of temperatures limits, engine size and weight as well as pollutants emissions. This methodology does not use engine components’ maps and operates on simplifying assumptions which are satisfying the conceptual or early design stages. The predefined requirements and design constraints have resulted in an engine with high mass flow rate, bypass ratio and overall pressure ratio and a moderate turbine inlet temperature. In general, the optimized engine is fairly comparable with available engines of equivalent power range.


2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Murugan Kuppusamy ◽  
Thirumalai Ramanathan ◽  
Udhayakumar Krishnavel ◽  
Seenivasan Murugesan

The effect of thermal-barrier coatings (TBCs) reduces fuel consumption, effectively improving the engine efficiency. This research focused on a TBC with a thickness of 300 µm insulating the combustion chamber of a direct ignition (DI) engine. The piston crown, inlet and exhaust-valve head were coated using air-plasma-spray coating. Ceramic powder materials such as molybdenum (Mo) and aluminum oxide titanium dioxide (Al2O3-TiO2) were used. A performance test of the engine with the coated combustion chamber was carried out to investigate the brake power, brake thermal efficiency, volumetric efficiency, brake specific fuel consumption and air-fuel ratio. Also, an emission-characteristic test was carried out to investigate the emissions of unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NO, NO2, NO3) and smoke opacity (SO). The results reveal that the brake thermal efficiency and brake specific fuel consumption show significant increases because of these coating materials. The effect of the Al2O3-TiO2 coating significantly reduces the HC and CO engine emissions.


2021 ◽  
Vol 8 (3) ◽  
pp. 89-96
Author(s):  
Herbert Hasudungan Siahaan ◽  
Armansyah H Tambunan ◽  
Desrial ◽  
Soni Solistia Wirawan

A helical barrier as air-biogas mixing device was designed and tested for direct use of biogas from digester in otto cycle generator set. Homogeneity of the air-fuel mixture can give better combustion reaction and increase engine power. The design was based on simulation, which shows that a 0.039 m length of helical barrier gave a 5% increase in power compared to non-helical barrier. Likewise, the simulations also showed that the helical barrier reduced specific fuel consumption (SFC) by 8%. Accordingly, the mixer with helical barrier was designed, and fabricated. Its performance test confirms the improvement resulted by using helical barriers as air-biogas mixer in the engine. The experiment showed that the power increased by 5% when using helical barrier, while SFC decreased by 4.5%. It is concluded that the helical barrier can increase the homogeneity of the mixture resulting in better engine performance. Besides, emissions produced from the engine using a helical barrier also decreased.


Sign in / Sign up

Export Citation Format

Share Document