Influence of Gas Turbine Exhaust CO2 Concentration on the Performance of Post Combustion Carbon Capture Plant

Author(s):  
Muhammad Akram ◽  
Simon Blakey ◽  
Mohamed Pourkashanian

As a result of increased concern over Greenhouse Gas emissions, capture of CO2 from stationary power sources is a topic under discussion throughout the world. The most developed technology for the application is post combustion carbon capture using liquid solvents. However, due to very low concentration of CO2 in the gas turbine emitted flue gas, energy penalty caused by the capture process is relatively high. One of the methods to increase CO2 concentration is the recycling of flue gas (also termed as EGR) in which part of the flue gas is sent back to join the air stream entering the compressor. This paper presents results of an experimental campaign carried out at the Pilot Scale Advanced Capture Technology (PACT) facilities of the UK Carbon Capture and Storage Research Centre (UKCCSRC). A Turbec T100 microturbine of 100kWe is integrated with a post combustion carbon capture plant of 1TPD (Ton per day) CO2 capture capacity. The microturbine is very lean combustion system and produces a flue gas having only 1.5% CO2. Therefore, in order to simulate EGR on industrial gas turbines which produce around 4–5% CO2 in the exhaust stream, CO2 from a cryogenic storage tank was injected into the slip stream of the gas turbine exhaust. The impact of different CO2 concentrations (representing EGR) on the post combustion carbon capture process is experimentally evaluated. It is observed that the energy penalty caused by the capture process is considerably reduced at higher CO2 concentration in the absorber inlet flue gas stream. EGR also has a negative impact on the produced power from the gas turbine as well as the combustion process. However, it has positive impact on the power output from steam turbine. Optimum recycle ratio for maximum power output from combined cycle gas turbine is discussed. Performance of the absorption column as indicated by rich and lean solvent CO2 loadings is discussed. Moreover, emissions of solvent and some of the degradation products with the exhaust gas from the capture plant are monitored and reported.

Author(s):  
Robin C. Payne ◽  
Manuel Arias ◽  
Vassilis Stefanis

For the next generation of combined cycles, it is essential to not only improve the performance of a gas turbine combined cycle power plant, but also reduce its environmental impact. Flue Gas Recirculation is a useful method to increase CO2 concentration in the exhaust stream, allowing a smaller and lower cost carbon capture plant than would be required without FGR. Conventional FGR methodology requires a complex mixer with long mixing section to achieve acceptable inlet conditions for the GT compressor. A novel approach is presented, where the method of introducing the flue gas to the compressor has been substantially rethought to provide a low cost and robust FGR solution for carbon capture and sequestration applications. In this paper, CFD analysis of the flow in the intake section is used to demonstrate the operating principle of such a method, and cycle modelling calculations to compare its performance with a more conventional approach.


Author(s):  
Charles Bultzo

The paper presents a detailed thermodynamic analysis of a combined gas-turbine “CO” boiler installation. Regenerator flue gas with 9 per cent CO is burned to CO2 using gas-turbine exhaust which contains 17 per cent O2. In addition, the first costs of a steam-turbine drive is compared to that of the gas-turbine installation. The summary is a comparison of the anticipated efficiency with those being experienced.


Author(s):  
Sepehr Sanaye ◽  
Vahid Mahdikhani ◽  
Ziaeddin Khajeh Karimeddini ◽  
Gholamreza Sadri

Steam injection into gas turbine combustion chamber increases the power output and lowers the NOx emissions. Steam may be produced in a heat recovery steam generator (HRSG), using gas turbine exhaust gases. Steam which is usually injected with pressure of combustion chamber, increases the mass flow rate flowing through turbine and decreases the combustion temperature, hence, lowering the amount of NOx emissions. This power augmentation method is usually used for gas turbines with power outputs in range of 2–50 MW with one pressure level in HRSG. In this paper the optimum design parameters of the above mentioned system is obtained for the above range of gas turbine power output. For doing this task an objective function is introduced which contains the economic and thermal characteristics of the system. This objective function is minimized when gas turbine exhaust temperature, compressor pressure ratio, isentropic efficiency of compressor and turbine, fuel mass flow rate (natural gas), inlet air mass flow rate, and the amount of injected steam mass flow rate vary.


1974 ◽  
Vol 96 (3) ◽  
pp. 181-184 ◽  
Author(s):  
J. R. Cummins

To investigate the sources of acoustic radiation from a gas turbine exhaust, a one-seventh scale model has been constructed. The model geometrically scales the flow path downstream of the rotating parts including support struts and turning vanes. A discussion and comparison of different kinds of aerodynamic and acoustic scaling techniques are given. The effect of the temperature ratio between model and prototype is found to be an important parameter in comparing acoustical data.


Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Author(s):  
Niall R. McGlashan ◽  
Peter R. N. Childs ◽  
Andrew L. Heyes

This paper describes an extension of a novel, carbon-burning, fluid phase chemical looping combustion system proposed previously. The system generates both power and H2 with ‘inherent’ carbon capture using chemical looping combustion (CLC) to perform the main energy release from the fuel. A mixed Pb and Zn based oxygen carrier is used, and due to the thermodynamics of the carbothermic reduction of PbO and ZnO respectively, the system generates a flue gas which consists of a mixture of CO2 and CO. By product H2 is generated from this flue gas using the water-gas shift reaction (WGSR). By varying the proportion of Pb to Zn circulating in the chemical loop, the ratio of CO2 to CO can be controlled, which in turn enables the ratio between the amount of H2 produced to the amount of power generated to be adjusted. By this means, the power output from the system can be ‘turned down’ in periods of low electricity demand without requiring plant shutdown. To facilitate the adjustment of the Pb/Zn ratio, use is made of the two metal’s mutual insolubility, as this means they form in to two liquid layers at the base of the reduction reactor. The amount of Pb and Zn rich liquid drawn from the two layers and subsequently circulated around the system is controlled thereby varying the Pb/Zn ratio. To drive the endothermic reduction of ZnO formed in the oxidiser, hot Zn vapour is ‘blown’ into the reducer where it condenses, releasing latent heat. The Zn vapour to produce this ‘blast’ of hot gas is generated in a flash vessel fed with hot liquid metal extracted from the oxidiser. A mass and energy balance has been conducted for a power system, operating on the Pb/Zn cycle. In the analysis, reactions are assumed to reach equilibrium and losses associated with turbomachinery are considered; however, pressure losses in equipment and pipework are assumed to be negligible. The analysis reveals that a power system with a second law efficiency of between 62% and 68% can be constructed with a peak turbine inlet temperature of only ca. 1850 K. The efficiency varies as the ratio between power and H2 production varies, with the lower efficiency occurring at the maximum power output condition.


1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


Sign in / Sign up

Export Citation Format

Share Document