Unsteady Work and Wake Recovery due to Pressure Wave Interaction in a LP Turbine

Author(s):  
Martin Marx ◽  
Martin Lipfert ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Karl Engel

Recent publications have demonstrated the influence of unsteady work terms on the inviscid recovery of wake momentum. So far, this so-called wake differential work effect was only validated based on selected locations and time steps in turbine rotors. The magnitude of this effect over a whole blade passing cycle and the local unsteady work mechanisms causing it are still not fully understood. Using a numerical simulation, the unsteady static pressure field of a turbine rotor is assessed. Three regions are identified in which work is transfered unsteadily to the fluid, caused by the fluid interaction with the unsteady rotor pressure field. A Lagrangian analysis is performed to validate and quantify the wake differential work concept. To be representative, a large number of wake and free stream fluid particle paths are evaluated. Overall, a 7 per cent lower wake work in the rotor is identified, averaged over a whole blade passing cycle. From a particle point of view, the rotor pressure field acts as a pressure wave propagating in circumferential direction. Due to inviscid unsteady work, this pressure wave influences the stagnation enthalpy of the fluid particles. It is shown that this effect is more dominant for wake fluid, as the wake velocity is closer to the propagation velocity of the pressure wave. A mathematical model of this so-called “wake surfing effect” and the two other unteady work mechanisms reveals how the wake momentum is recovered depending on the initial wake velocity vector. If exploited well, this unsteady work mechanism could cause a reduction of wake mixing loss, leading to an increased turbine efficiency.

Author(s):  
C. Faustmann ◽  
E. Göttlich

The paper deals with the investigation on the aerodynamics and the acoustics of two different turning mid turbine frames (TMTF) in the two-stage two-spool test turbine located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The facility is a continuously operating cold-flow open-circuit plant which is driven by pressurized air. The flow path consists of a transonic turbine stage (HP) followed by a low pressure turbine stage made of a turning mid turbine frame (TMTF) and a counter-rotating low pressure rotor. The two TMTF setups have been investigated at engine like flow conditions. The first configuration consists of 16 highly 3D-shaped turning struts. The goal of the second design was to reduce the length of the TMTF by 10% without increasing the losses and providing comparable inflow to the LP turbine rotor. This was achieved by applying 3D-contoured endwalls at the hub. To estimate the pressure loss over the duct aerodynamic measurements are performed at the inlet and the outlet of both turning mid turbine frames by using 5-hole probes (FHP) and total pressure rakes. The FHP-measurements at the inlet of the TMTF were performed in three different ways to obtain the influence of probe positioning and traversing on the results. While the 5-hole probe was traversed only in a sector the rakes were traversed over the full circumference. The comparison between the two turning mid turbine frame setups shows from an aerodynamic point of view that it is possible to reduce the engine weight by designing a 10% shorter TMTF with endwall contouring providing the same pressure loss and comparable inflow conditions for the LP turbine rotor. Due to the fact that noise becomes more and more an issue additional acoustic measurements were carried out downstream of the low pressure turbine. By comparing the two setups in terms of noise generation the propagating modes due to the HP turbine were found to be the same, while an increase of 10dB in amplitude of the modes related to the LP turbine was found in the 10% shorter setup. This is in good accordance with previous studies, where reducing the distance between stator and rotor increases the emitted sound.


Author(s):  
Wei Liang ◽  
Lai-bin Zhang ◽  
Zhao-hui Wang

In China, the rarefaction-pressure wave techniques are widely used to diagnose the leakage fault for liquid pipelines. Many leaking propagating assumptions, such as stable single-phased flow hypothesis and none rarefaction wave front hypothesis, are often uncertain in the process of leak detection, which can easily result in some errors. Thus the rarefaction-pressure wave techniques should be integrated with other analytical techniques to compute a more accurate leak location. Additionally, the development trends of rarefaction-pressure wave techniques lie in three aspects. First, rarefaction-pressure wave detection techniques will be integrated with other compatible detection techniques and modern signal processing methods to solve the complex problems encountered in leak detection. Second, studies of rarefaction-pressure wave techniques have advanced to a new stage. The deductions on propagation mechanism of rarefaction-pressure wave have been successfully applied to determine leaks qualitatively. Third, analysis on rarefaction-pressure wave detection techniques will be made from a quantitative point of view. The quantitative data have been used to deduce leak amounts and location. The purpose of this paper is to present the recent achievements in the study of improved rarefaction-pressure wave detection techniques. The rarefaction-pressure wave detection methods, effects of incomplete information conditions, the improvements of rarefaction-pressure wave detection techniques with modified factors and propagation mechanisms are comprehensively investigated. The disfigurements of rarefaction-pressure wave are analyzed. The corresponding methods for resolving such problems as ill diagnostic information and weak amplitude values are put forward. Several methods for stronger small leakage detection ability, higher leakage positioning precision, lower false alarm rates are proposed. The application of rarefaction-pressure wave detection techniques to safety protection of liquid pipelines is also introduced. Finally, the prospect of rarefaction-pressure wave detection techniques is predicted.


Author(s):  
P. González ◽  
I. Ulizar ◽  
R. Vázquez ◽  
H. P. Hodson

Nowadays there is a big effort toward improving the low pressure turbine efficiency even to the extent of penalising other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behaviour of both pressure and suction surfaces has been investigated for the case of a high lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists on two different sets of experiments: the first one concluded an improved pressure surface definition and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to mid-chord. The second profile is a hollow design with the same suction surface as the first one but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile but more aft loaded suction surface. The study is part of a wider on-going research programme covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90% of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended as profile aft loading would not be a completely secure method for reducing losses.


2000 ◽  
Vol 14 (2) ◽  
pp. 207-214
Author(s):  
Choon-Yeol Lee ◽  
Jae-Do Kwon ◽  
Young S. Chai ◽  
Ki-Sang Jang

2016 ◽  
Vol 829 ◽  
pp. 21-26
Author(s):  
Mahdi Torabi Asr ◽  
Reza Osloob ◽  
Faizal Mustapha

H-Darrieus wind turbines, due to their simple design and relatively low manufacturing costs have recently received much attention particularly for standalone applications. However start-up issues associated with their operation restricted their operation in areas of low average wind speed and encourages engineers to develop novel design. Several design proposed in this way but in most cases design came up with complex sensing mechanisms and mechanical actuators or high cost manufacturing parts. A recent rotor design called double Darrieus rotor proposed as a German patent case bridged these complexities appropriately. The aim of present study is to investigate this innovative design from aerodynamic point of view by means of validated CFD techniques. A flow-driven simulation setup based on 6DOF calculations employed in order to study rotor operation from stand still until peak performance obtained. Results from these precise modeling reveal the superiority of the proposed double-stage design in compare with the original H-Darrieus rotors in terms of start-up behavior and optimum performance.


Author(s):  
MA Chao ◽  
LU Kangbo ◽  
LI Wenjiao

Radial turbines used in turbochargers and micro-turbines are subjected to high inlet temperature. This creates high thermal stress in the turbines, and possible creep of turbine inducer blades, and can reduce turbines’ reliability. With the ever-stringent engine emission regulations and the continuous drive for engine power density, turbine inlet temperature is significantly increased recently and the risk of thermo-mechanical failure of turbine rotor is heightened. To solve this problem, an innovative turbine cooling method is proposed by injecting a small amount of compressor or intercooler discharge air onto the upper backdisc region of turbine rotor to cool the disc and the inducer blades. A conjugate heat transfer simulation was carried out to investigate the effects of this cooling method with a turbocharger turbine. Flow conditions and geometric configurations were investigated for their influences on the cooling effectiveness of the method. The results show that using the compressor discharger air after intercooler with only 0.5–2.0% of turbine mass flow, the averaged cooling efficiency of the turbine backdisc is promoted by 23–43%; only four to six jets may be needed to cool the entire backdisc; and turbine efficiency is reduced by less than 1% point.


Author(s):  
Thomas Coton ◽  
Tony Arts ◽  
Michae¨l Lefebvre ◽  
Nicolas Liamis

An experimental and numerical study was performed about the influence of incoming wakes and the calming effect on a very high lift low pressure turbine rotor blade. The first part of the paper describes the experimental determination of the pressure loss coefficient and the heat transfer around the blade mounted in a high speed linear cascade. The cascade is exposed to incoming wakes generated by high speed rotating bars. Their aim is to act upon the transition/separation phenomena. The measurements were conducted at a constant exit Mach number equal to 0.8 and at three Reynolds number values, namely 190000, 350000 and 650000. The inlet turbulence level was fixed at 0.8%. An additional feature of this work is to identify the boundary layer status through heat transfer measurements. Compared to the traditionally used hot films, thin film heat flux gages provide fully quantitative data required for code validation. Numerical computations are presented in the second part of the paper.


Author(s):  
Liam Barr ◽  
Stephen W. T. Spence ◽  
Paul Eynon

This report details the numerical investigation of the performance characteristics and internal flow fields of an 86 mm radial turbine for a turbocharger application. A new blade was subsequently designed for the 86 mm rotor which departed from the conventional radial inlet blade angle to incorporate a 25° inlet blade angle. A comparative analysis between the two geometries is presented. Results show that the 25° back swept blade offers significant increases in efficiency while operating at lower than optimum velocity ratios (U/C). This enhanced efficiency at off-design conditions would significantly improve turbocharger performance where the turbine typically experiences lower than optimum velocity ratios while accelerating during engine transients. A commercial CFD code was used to construct single passage steady state numerical models. The numerical predictions show off-design performance gains of 2% can be achieved, while maintaining design point efficiency. Primary and secondary flow patterns are examined at various planes within the turbine blade passage and reasons for the increase in performance are discussed. A finite element analysis has been conducted to assess the stress implications of introducing a non-radial angle at turbine rotor inlet. A modal analysis was also carried out in order to identify the natural frequencies of the turbine geometry, thus calculating the critical speeds corresponding to the induction of the excitational frequencies from the stator vanes. Although the new blade design has resulted in stress increases in some regions, the numerical study has shown that it is feasible from both an aerodynamic and structural point of view to increase the performance characteristic of a radial turbine through the implementation of back swept blading.


Sign in / Sign up

Export Citation Format

Share Document