Fan Performance Scaling With Inlet Distortions

Author(s):  
J. J. Defoe ◽  
D. K. Hall

Applications such as boundary-layer-ingesting fans, and compressors in turboprop engines require continuous operation with distorted inflow. A low-speed axial fan with incompressible flow is studied in this paper. Previous work in the literature has shown that the same flow mechanisms contributing to the response of a fan to distortion are at play in incompressible and transonic flows. The objective is to determine how fan performance scales as the type and severity of inlet distortion varies at the design flow coefficient. A distributed source term approach to modeling the rotor and stator blade rows is used in numerical simulations in this paper. The approach has been shown to capture overall stage performance and flow field behavior with distortions having length scales much longer than the blade pitch. The approach requires only knowledge of the blade geometry, but the model does not include viscous losses. As a result, efficiency is not assessed but instead a metric based on changes in diffusion factor is defined which is conjectured to be related to efficiency changes. Distortions in stagnation pressure, swirl, and stagnation temperature are considered. By studying the distortions individually, it is found that the diffusion metric scales linearly with the intensity of the distortions (i.e. the ratio of minimum to maximum values) but that changes in distortion location relative to the fan axis produce nonlinear changes in the diffusion metric. Combinations of distortions are also studied and it is found that the diffusion metric associated with the combined distortion can be predicted using a summation procedure for the metrics associated with the individual constituent distortions. The mechanism found to govern the effectiveness of this summation procedure is the incidence distortions at rotor and stator inlet.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
J. J. Defoe ◽  
M. Etemadi ◽  
D. K. Hall

Applications such as boundary-layer-ingesting (BLI) fans and compressors in turboprop engines require continuous operation with distorted inflow. A low-speed axial fan with incompressible flow is studied in this paper. The objectives are to (1) identify the physical mechanisms which govern the fan response to inflow distortions and (2) determine how fan performance scales as the type and severity of inlet distortion varies at the design flow coefficient. A distributed source term approach to modeling the rotor and stator blade rows is used in numerical simulations in this paper. The model does not include viscous losses so that changes in diffusion factor are the primary focus. Distortions in stagnation pressure and temperature as well as swirl are considered. The key findings are that unless sharp pitchwise gradients in the diffusion response, strong radial flows, or very large distortion magnitudes are present, the response of the blade rows for strong distortions can be predicted by scaling up the response to a weaker distortion. In addition, the response to distortions which are composed of nonuniformities in several inlet quantities can be predicted by summing up the responses to the constituent distortions.


Author(s):  
Va´clav Cyrus

Flow reversal in axial fans is usually performed by the change of revolution direction and by stator vanes turning. Derived relations express the relative position of characteristics curves for reverse and normal flows. The ratio of volume flow rates at these conditions decreases with rotor blade profiles camber (aerodynamic loading) and with flow coefficient. The characteristics of two axial-flow stages A, B with different aerodynamic loading and design flow coefficient were measured on a test rig with external diameter of 600mm. Rotor diffusion factor D at mid-span of stage A and B were DR,m = 0.56 and DR,m = 0.3. Design flow coefficient was φD = 0.6 and 0.4, respectively. Theoretical deductions were confirmed by the experiment. Required volume flow rate ratio (Qrev/Qn ≥ 0.6) was reached only in the case of stage B. Detailed flow fields investigations were carried out in this case with the use of 5-hole conical probes at normal and reverse flows. The mechanism of 3D flows in blade rows could be described in these different fan working regimes.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 764
Author(s):  
Jarosław Bartnicki ◽  
Yingxiang Xia ◽  
Xuedao Shu

The paper presents chosen aspects of the skew rolling process of hollow stepped products with the use of a skew rolling mill designed and manufactured at the Lublin University of Technology. This machine is characterized by the numerical control of spacing between the working rolls and the sequence of the gripper axial movement, which allows for the individual programming of the obtained shapes of parts such as stepped axles and shafts. The length of these zones and the values of possibly realizable cross-section reduction and obtained outlines are the subject of this research paper. The chosen results regarding the influence of the technological parameters used on the course of the process are shown in the present study. Numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a skew rolling mill, were applied in the conducted research. The work takes into account the influence of cross-section reduction of the hollow parts and the feed rate per rotation on the metal flow mechanisms in the skew rolling process. The presented results concern the obtained dimensional deviations and changes in the wall thickness determining the proper choice of technological parameters for hollow parts formed by the skew rolling method. Knowledge about the cause of the occurrence of these limitations is very important for the development of this technology and the choice of the process parameters.


Author(s):  
Gabor Simko ◽  
Tihamer Levendovszky ◽  
Sandeep Neema ◽  
Ethan Jackson ◽  
Ted Bapty ◽  
...  

One of the primary goals of the Adaptive Vehicle Make (AVM) program of DARPA is the construction of a model-based design flow and tool chain, META, that will provide significant productivity increase in the development of complex cyber-physical systems. In model-based design, modeling languages and their underlying semantics play fundamental role in achieving compositionality. A significant challenge in the META design flow is the heterogeneity of the design space. This challenge is compounded by the need for rapidly evolving the design flow and the suite of modeling languages supporting it. Heterogeneity of models and modeling languages is addressed by the development of a model integration language – CyPhy – supporting constructs needed for modeling the interactions among different modeling domains. CyPhy targets simplicity: only those abstractions are imported from the individual modeling domains to CyPhy that are required for expressing relationships across sub-domains. This “semantic interface” between CyPhy and the modeling domains is formally defined, evolved as needed and verified for essential properties (such as well-formedness and invariance). Due to the need for rapid evolvability, defining semantics for CyPhy is not a “one-shot” activity; updates, revisions and extensions are ongoing and their correctness has significant implications on the overall consistency of the META tool chain. The focus of this paper is the methods and tools used for this purpose: the META Semantic Backplane. The Semantic Backplane is based on a mathematical framework provided by term algebra and logics, incorporates a tool suite for specifying, validating and using formal structural and behavioral semantics of modeling languages, and includes a library of metamodels and specifications of model transformations.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
R. Lundgreen ◽  
D. Maynes ◽  
S. Gorrell ◽  
K. Oliphant

An inducer is used as the first stage of high suction performance pump. It pressurizes the fluid to delay the onset of cavitation, which can adversely affect performance in a centrifugal pump. In this paper, the performance of a water pump inducer has been explored with and without the implementation of a stability control device (SCD). This device is an inlet cover bleed system that removes high-energy fluid near the blade leading edge and reinjects it back upstream. The research was conducted by running multiphase, time-accurate computational fluid dynamic (CFD) simulations at the design flow coefficient and at low, off-design flow coefficients. The suction performance and stability for the same inducer with and without the implementation of the SCD has been explored. An improvement in stability and suction performance was observed when the SCD was implemented. Without the SCD, the inducer developed backflow at the blade tip, which led to rotating cavitation and larger rotordynamic forces. With the SCD, no significant cavitation instabilities developed, and the rotordynamic forces remained small. The lack of cavitation instabilities also allowed the inducer to operate at lower inlet pressures, increasing the suction performance of the inducer.


Author(s):  
Fabian Dietmann ◽  
Michael Casey ◽  
Damian M. Vogt

Abstract Further validation of an analytic method to calculate the influence of changes in Reynolds number, machine size and roughness on the performance of axial and radial turbocompressors is presented. The correlation uses a dissipation coefficient as a basis for scaling the losses with changes in relative roughness and Reynolds number. The original correlation from Dietmann and Casey [6] is based on experimental data and theoretical models. Evaluations of five numerically calculated compressor stages at different flow coefficients are presented to support the trends of the correlation. It is shown that the sensitivity of the compressor performance to Reynolds and roughness effects is highest for low flow coefficient radial stages and steadily decreases as the design flow coefficient of the stage and the hydraulic diameter of the flow channels increases.


Author(s):  
Sumit Tambe ◽  
Ugaitz Bartolomé Oseguera ◽  
Arvind Gangoli Rao

Abstract In the pursuit of reducing the fuel burn, future aircraft configurations will feature several types of improved propulsion systems, e.g. embedded engines with boundary layer ingestion, high-bypass ratio engines with short intakes, etc. Depending on the design and phase of flight, the engine fan will encounter inflow distortion of varying strength, and fan performance will be adversely affected. Therefore, investigation of the flow phenomena causing performance losses in fan and distortion interaction is important. This experimental study shows the effect of varying distortion index on four aspects of fan performance: distortion topology, upstream redistribution, performance curve, and flow unsteadiness. A low speed fan is tested under 60° circumferential distortion of varying strength, generated using distortion screens. The flow field in the upstream redistribution region is measured using PIV (planar and stereo). The fan performance is obtained using total pressure measurements. The noise spectra measured by a microphone are used to quantify the unsteadiness in the flow field. The distortion index (DC60) varies linearly with the grid porosity at constant wall thickness and aspect ratio of the grid cells. However, the distortion topology is significantly different as a stream-wise vortex pair appears in distorted flow at higher DC60. The vortices are stronger at higher DC60, but their order of magnitude is much lower than the circulation corresponding to fan itself. The spinner, distortion index and topology significantly affect the upstream redistribution mechanism. The vortex pair redistributes the flow which results in lower asymmetry in the symmetry plane. With increasing distortion, the performance is reduced and the unsteadiness is increased.


1991 ◽  
Author(s):  
Ronald D. Flack ◽  
Steven M. Miner ◽  
Ronald J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two directional laser velocimeter. Data presented includes radial, tangential, and cross product Reynolds stresses. Blade to blade profiles were measured at four circumferential positions and four radii within and one radius outside the four bladed impeller. The pump was tested in two configurations; with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40% to 106% of the design flow rate. Variation in profiles among the individual passages in the orbiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9% and exit turbulence intensities were 6%. For 40% flow capacity the values increased to 18% and 19%, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


2020 ◽  
pp. 1-18
Author(s):  
M.P. Manas ◽  
A.M. Pradeep

ABSTRACT A contra-rotating fan offers several aerodynamic advantages that make it a potential candidate for future aircraft engine configurations. Stall in a contra-rotating axial fan is interesting since instabilities could arise from either or both of the rotors. In this experimental study, a contra-rotating axial fan is analysed under clean or distorted inflow conditions to understand its performance and stall inception characteristics. The steady and unsteady measurements identified the relative contribution of each rotor towards the performance of the stage. The tip of rotor-1 is identified to be the most critical region of the contra-rotating fan. The contribution of rotor-2 to the overall loading of the stage is observed to be relatively less than rotor-1. The penalty due to distortion in the stage pressure rise is mostly felt by rotor-1, while rotor-2 also shows a reduction in performance for distorted inflows. Rotor-2 stalls at a high flow coefficient marking the initiation of partial stall of the stage, and the stall of the whole stage occurs once rotor-1 stalls. A fluid phenomenon that is attached to the blade surface marks the stall of rotor-1, and this fluid phenomenon initially rotates at a speed close to the speed of rotation of the blade. As the stage moves towards the fully developed stall, this fluid phenomenon sheds from the blade surface. The fluid phenomenon thus propagates at a speed much lower than the rotational speed of the blade during fully developed stall.


Sign in / Sign up

Export Citation Format

Share Document