An Onion Peeling Reconstruction of the Spatial Characteristics of Entropy Waves in a Model Gas Turbine Combustor

Author(s):  
Dominik Wassmer ◽  
Felix Pause ◽  
Bruno Schuermans ◽  
Christian Oliver Paschereit ◽  
Jonas P. Moeck

Entropy noise affects thermoacoustic stability in lean pre-mixed gas turbine combustion chambers. It is defined as acoustic noise that is emitted at the first turbine stage due to the acceleration of entropy waves that are advected from the reaction zone in the combustor to the turbine inlet. These non-isentropic temperature waves are caused by equivalence ratio fluctuations which are inherently present in a technically premixed combustion system. To experimentally study the generation and transport of entropy waves, an estimation of the spatial distribution of the entropy spots is highly valuable as it allows the accurate determination of the cross-section averaged entropy, which is the relevant quantity for the formation mechanism of entropy noise at the turbine stage. In this work, a time-of-flight based temperature measurement method is applied to a circular combustion test rig equipped with a premixed swirl-stabilized combustor. Downstream of the burner, an electric spark discharge is employed to generate a narrow acoustic pulse which is detected with a circumferentially arranged microphone array. The measured time of flight of the acoustic signal corresponds to the line-integrated inverse of the speed of sound between the acoustic source and each microphone. By modulating a share of the injected gaseous fuel, equivalence ratio fluctuations are generated upstream of the reaction zone and consequently entropy spots are advected through the axial measurement plane. The spark discharge is triggered at distinct phase angles of the entropy oscillation, thus allowing a time resolved-analysis of the thermo-acoustic phenomenon. Estimating the spatial temperature distribution from the measured line integrated inverse speed of sounds requires tomographic reconstruction. A Tikhonov regularized Onion Peeling is employed to deduce radial temperature profiles. To increase the number of independent data, the spark location is radially traversed, which enhances the resolution of the reconstructed temperature field. A phantom study is conducted, which allows the assessment of the capabilities of the reconstruction algorithm. By means of the reconstructed radial entropy field, spatially resolved entropy waves are measured and their amplitudes and phases are extracted. The characteristics of the entropy waves measured in this way correspond well to former studies.

Author(s):  
Dominik Wassmer ◽  
Bruno Schuermans ◽  
Christian Oliver Paschereit ◽  
Jonas P. Moeck

Lean premixed combustion promotes the occurrence of thermoacoustic phenomena in gas turbine combustors. One mechanism that contributes to the flame-acoustic interaction is entropy noise. Fluctuations of the equivalence ratio in the mixing section cause the generation of hot spots in the flame. These so called entropy waves are convectively transported to the first stage of the turbine and generate acoustic waves that travel back to the flame; a thermoacoustic loop is closed. However, due to the lack of experimental tools, a detailed investigation of entropy waves in gas turbine combustion systems has not been possible up to now. This work presents an acoustic time-of-flight based temperature measurement method which allows the detection of temperature fluctuations in the relevant frequency range. A narrow acoustic pulse is generated with an electric spark discharge close to the combustor wall. The acoustic response is measured at the same axial location with an array of microphones circumferentially distributed around the combustion chamber. The delay in the pulse arrival times corresponds to the line-integrated inverse speed of sound. For validation of this new method an experimental setup was developed capable of generating well defined entropy waves. As a reference temperature measurement technique a hot-wire anemometer is employed. For the measurement of entropy waves in an atmospheric combustion test rig, fuel is periodically injected into the mixing tube of a premixed combustor. The subsequently generated entropy waves are detected for different forcing frequencies of the fuel injection and for different mean flow velocities in the combustor. The amplitude decay and phase lag of the entropy waves adheres well to a Strouhal number scaling for different mean flow velocities. In addition, simultaneously to the entropy wave measurement, the equivalence ratio fluctuations in the mixing tube are detected using the Tunable Diode Laser Absorption Spectroscopy (TDLAS) technique.


Author(s):  
Huan Zhang ◽  
Zhedian Zhang ◽  
Yan Xiong ◽  
Yan Liu ◽  
Yunhan Xiao

The Moderate or Intense Low-oxygen Dilution (MILD) combustion is characterized by low emission, stable combustion and low noise for various kinds of fuel. MILD combustion is a promising combustion technology for gas turbine. The model combustor composed of an optical quartz combustor liner, four jet nozzles and one pilot nozzle has been designed in this study. The four jet nozzles are equidistantly arranged in the combustor concentric circle and the high-speed jet flows from the nozzles will entrain amount of exhaust gas to make MILD combustion occur. The combustion characteristics of the model combustor under atmosphere pressure have been investigated through experiments and numerical simulations. The influence of equivalence ratio and jet velocity on flow pattern, combustion characteristics and exhaust emissions were investigated in detail, respectively. Laser Doppler velocity (LDV) was utilized to measure the speed of a series of points in the model combustor. The measurement results show that a central recirculation existed in the combustion chamber. As the jet velocity of the nozzles increases, the amount of entrained mass by the jet increases simultaneously, however, the central recirculation zone is similar in shape and size. The recirculation of the model combustor will remain self-similar when the jet velocity varies in the range. The calculation model and method were verified through comparing with experimentally LDV data and be used to optimize the model combustor. Planar laser-induced fluorescence of hydroxyl radical (OH-PLIF) approaches were adopted to investigate the flame structure, the reaction zone and the OH distribution. OH distribution of the paralleled and crossed sections in the model combustor were measured, the whole reaction zone have been analyzed. The results show that the OH distribution was uniform in whole combustor. The exhaust gas composition of the combustor was measured by the “TESTO 350” Exhaust Gas Analyzer. All measurements emission results were corrected to 15% O2 in volume. Experimental results showed that NOx and CO emissions were less than 10 ppm@15%O2 when the equivalence ratio ranges from 0.63 to 0.8.


Author(s):  
Hafiz M Hassan ◽  
Adeel Javed ◽  
Asif H Khoja ◽  
Majid Ali ◽  
Muhammad B Sajid

A clear understanding of the flow characteristics in the older generation of industrial gas turbines operating with silo combustors is important for potential upgrades. Non-uniformities in the form of circumferential and radial variations in internal flow properties can have a significant impact on the gas turbine stage performance and durability. This paper presents a comprehensive study of the underlying internal flow features involved in the advent of non-uniformities from twin-silo combustors and their propagation through a single axial turbine stage of the Siemens v94.2 industrial gas turbine. Results indicate the formation of strong vortical structures alongside large temperature, pressure, velocity, and flow angle deviations that are mostly located in the top and bottom sections of the turbine stage caused by the excessive flow turning in the upstream tandem silo combustors. A favorable validation of the simulated exhaust gas temperature (EGT) profile is also achieved via comparison with the measured data. A drop in isentropic efficiency and power output equivalent to 2.28% points and 2.1 MW, respectively is observed at baseload compared to an ideal straight hot gas path reference case. Furthermore, the analysis of internal flow topography identifies the underperforming turbine blading due to the upstream non-uniformities. The findings not only have implications for the turbine aerothermodynamic design, but also the combustor layout from a repowering perspective.


Author(s):  
Edson Batista da Silva ◽  
Marcelo Assato ◽  
Rosiane Cristina de Lima

Usually, the turbogenerators are designed to fire a specific fuel, depending on the project of these engines may be allowed the operation with other kinds of fuel compositions. However, it is necessary a careful evaluation of the operational behavior and performance of them due to conversion, for example, from natural gas to different low heating value fuels. Thus, this work describes strategies used to simulate the performance of a single shaft industrial gas turbine designed to operate with natural gas when firing low heating value fuel, such as biomass fuel from gasification process or blast furnace gas (BFG). Air bled from the compressor and variable compressor geometry have been used as key strategies by this paper. Off-design performance simulations at a variety of ambient temperature conditions are described. It was observed the necessity for recovering the surge margin; both techniques showed good solutions to achieve the same level of safe operation in relation to the original engine. Finally, a flammability limit analysis in terms of the equivalence ratio was done. This analysis has the objective of verifying if the combustor will operate using the low heating value fuel. For the most engine operation cases investigated, the values were inside from minimum and maximum equivalence ratio range.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Author(s):  
Wyatt Culler ◽  
Janith Samarasinghe ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca ◽  
Jacqueline O’Connor

Combustion instability in gas turbines can be mitigated using active techniques or passive techniques, but passive techniques are almost exclusively used in industrial settings. While fuel staging, a common passive technique, is effective in reducing the amplitude of self-excited instabilities in gas turbine combustors at steady-state conditions, the effect of transients in fuel staging on self-excited instabilities is not well understood. This paper examines the effect of fuel staging transients on a laboratory-scale five-nozzle can combustor undergoing self-excited instabilities. The five nozzles are arranged in a four-around-one configuration and fuel staging is accomplished by increasing the center nozzle equivalence ratio. When the global equivalence ratio is φ = 0.70 and all nozzles are fueled equally, the combustor undergoes self-excited oscillations. These oscillations are suppressed when the center nozzle equivalence ratio is increased to φ = 0.80 or φ = 0.85. Two transient staging schedules are used, resulting in transitions from unstable to stable operation, and vice-versa. It is found that the characteristic instability decay times are dependent on the amount of fuel staging in the center nozzle. It is also found that the decay time constants differ from the growth time constants, indicating hysteresis in stability transition points. High speed CH* chemiluminescence images in combination with dynamic pressure measurements are used to determine the instantaneous phase difference between the heat release rate fluctuation and the combustor pressure fluctuation throughout the combustor. This analysis shows that the instability onset process is different from the instability decay process.


Author(s):  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination consists of the assessment of the modification, due to deterioration and fault, of performance and geometric data characterizing machine components. One of the main effects of deterioration and fault is the modification of compressor and turbine performance maps. Since detailed information about actual modification of component maps is usually unavailable, many authors simulate the effects of deterioration and fault by a simple scaling of the map itself. In this paper, stage-by-stage models of the compressor and the turbine are used in order to assess the actual modification of compressor and turbine performance maps due to blade deterioration. The compressor is modeled by using generalized performance curves of each stage matched by means of a stage-stacking procedure. Each turbine stage is instead modeled as a couple of nozzles, a fixed one (stator) and a moving one (rotor). The results obtained by simulating some of the most common causes of blade deterioration (i.e., compressor fouling, compressor mechanical damage, turbine fouling and turbine erosion, occurring in one or more stages simultaneously) are reported in this paper. Moreover, compressor and turbine maps obtained through a stage-by-stage procedure are compared to the ones obtained by means of map scaling.


1980 ◽  
Author(s):  
T. M. Liu ◽  
R. M. Washam

During the development of a rich-lean staged dry low NOx combustor, the conventional trend of increasing smoke with increasing operating equivalence ratio was found when tests were run with distillate fuel (%H = 13.0). However, when tests were run with residual fuel (%H = 11.4), the trend was reversed. In addition, when the same combustor was run with blends of distillate fuel and residual fuel, a drastic improvement of smoke was observed when only 6 percent of residual fuel was mixed with distillate fuel, and for any blending of more than 10 percent of residual fuel the combustor was practically smoke free. A chemical analysis of fuel samples revealed an appreciable amount of trace metals in the residual fuel, giving rise to the suspicion that the smoke reduction may have been due in part to these trace metals. Of these elements found, vanadium is believed to be the most likely to cause smoke reduction because of its relatively high concentration.


Sign in / Sign up

Export Citation Format

Share Document