Static and Rotordynamic Characteristics of Liquid Annular Seals With a Circumferentially-Grooved Stator and Smooth Rotor Using Three Levels of Circumferential Inlet-Fluid Rotation

Author(s):  
Dara W. Childs ◽  
Jose M. Torres ◽  
Joshua T. Bullock

Test results are presented for a smooth-rotor/circumferentially-grooved, annular pump seal. The seal’s geometry and operating conditions are representative of electrical submersible pumps (ESPs) as used for oil recovery; however, most ESPs use grooved rotors instead of grooved stators. Test results include static and rotordynamic data at speeds ω of 2, 4, 6 krpm, axial pressure drops ΔP of 2.1, 4.1, 6.2, 8.3 bars. The grooved seal has a length-to-diameter ratio L/D of 0.5 and a minimum radial clearance Cr of 203 μm. It employs 15 circumferential grooves with a length Gl, and depth Gd of 1.52 mm, which are equally-spaced by a land length of 1.52 mm. Tests are conducted for eccentricity ratios ϵ0 of 0.00, 0.27, 0.53, 0.80. Three different inlet-fluid prerotation inserts are used upstream of the test seals to create a range of inlet preswirl ratios. Pitot tubes are used to measure the circumferential velocity at one location immediately upstream of the test seal and one downstream location near the seal exit. The test fluid is ISOVG2 oil @ 46 °C. Test results for the grooved seal are compared to test results for a smooth annular seal with the same L, D, and minimum Cr. The grooved-seal’s leakage rate Q̇, ranges from a low 15.64 LPM at ω = 6 krpm, and ΔP = 2 bar, to a high 56.36 LPM at ω = 2 krpm, and ΔP = 8 bar. When compared to the smooth seal, the grooved seal provides a 20% Q̇ reduction at ω = 2 krpm, and a 6% reduction at ω = 6 krpm. The grooved seal’s rotordynamic coefficients are generally not sensitive to changes in ϵ0. The smooth seal’s stiffness and damping coefficients are not very sensitive to changes in ϵ0 in moving from ϵ0 = 0 to 0.5, but typically increase dramatically in magnitude in moving from ϵ0 = 0.5 to 0.8. From a rotordynamic viewpoint, the major difference between the two seals concerns the direct stiffness coefficients, with the grooved seal having near zero to negative values and the smooth seal having larger positive values, particularly at increased ϵ0 values. The grooved seal generally produces lower-magnitude cross-coupled stiffness and direct damping coefficient values than the smooth seal.

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
J. Alex Moreland ◽  
Dara W. Childs ◽  
Joshua T. Bullock

Electric submersible pumps (ESPs) utilize grooved-rotor/smooth-stator (SS/GR) seals to reduce leakage and break up contaminants within the pumped fluid. Additionally, due to their decreased surface area (when compared to a smooth seal), grooved seals decrease the chance of seizure in the case of rotor-stator rubs. Despite their use in industry, the literature does not contain rotordynamic measurements for smooth-stator/circumferentially grooved-rotor liquid annular seals. This paper presents test results consisting of leakage measurements and rotordynamic coefficients for a SS/GR liquid annular sdeal. Both static and dynamic variables are investigated for various imposed preswirl ratios (PSRs), static eccentricity ratios (0–0.8), axial pressure drops (2–8 bars), and running speeds (2–8 krpm). The seals' static and dynamic features are compared to those of a smooth seal with the same length, diameter, and minimum radial clearance. Results show that the grooves reduce leakage at lower speeds (less than 5 krpm) and higher axial pressure drops, but does little at higher speeds. The grooved seal's direct stiffness is generally negative, which would be detrimental to pump rotordynamics. As expected, increasing preswirl increases the magnitude of cross-coupled stiffness and increases the whirl frequency ratio (WFR). When compared to the smooth seal, the grooved seal has smaller effective damping coefficients, indicative of poorer stability characteristics.


Author(s):  
J. Alex Moreland ◽  
Dara W. Childs ◽  
Joshua T. Bullock

Electric submersible pumps utilize grooved-rotor seals to reduce leakage and break up contaminants within the pumped fluid. Additionally, due to their decreased surface area (when compared to a smooth seal), grooved seals decrease the chance of seizure in the case of rotor-stator rubs. Despite their use in industry, the literature does not contain measurements for smooth-stator/circumferentially-grooved-rotor liquid annular seals. This paper presents test results consisting of leakage measurements and rotordynamic coefficients for a smooth-stator/circumferentially-grooved-rotor liquid annular seal. Both static and dynamic performance for the grooved seal are investigated for various imposed pre-swirl ratios, static eccentricities, axial pressure drops, and running speeds. The grooved seals′ static and dynamic performance are compared to those of a smooth seal with identical length, diameter, and radial clearance. Results show that adding grooves reduces leakage at lower speeds (less than 5 krpm) and higher axial pressure drops, but does little at higher speeds. The grooved seal’s direct stiffness is generally negative, which would be detrimental to pump rotordynamics. Furthermore, increasing pre-swirl increases the magnitude of cross-coupled stiffness and increases the whirl frequency ratio. When compared to the smooth seal, the grooved seal has smaller effective damping coefficients, indicative of worse stability characteristics.


Author(s):  
Min Zhang ◽  
James E. Mclean ◽  
Dara W. Childs

A 2-phase annular seal stand (2PASS) has been developed at the Turbomachinery Laboratory of Texas A&M University to measure the leakage and rotordynamic coefficients of division wall or balance-piston annular seals in centrifugal compressors. 2PASS was modified from an existing pure-air annular seal test rig. A special mixer has been designed to inject the oil into the compressed air, aiming to make a homogenous air-rich mixture. Test results are presented for a smooth seal with an inner diameter D of 89.306 mm, a radial clearance Cr of 0.188 mm, and a length-to-diameter ratio L/D of 0.65. The test fluid is a mixture of air and Silicone oil (PSF-5cSt). Tests are conducted with inlet LVF = 0%, 2%, 5%, and 8%, shaft speed ω = 10, 15, and 20 krpm, and pressure ratio PR = 0.43, 0.5, and 0.57. The test seal is concentric with the shaft (centered), and the inlet pressure is 62.1 bars. Complex dynamic stiffness coefficients are measured for the seal. The real parts are generally too dependent on excitation frequency Ω to be modeled by constant stiffness and virtual mass coefficients. The direct real dynamic stiffness coefficients are denoted as KΩ; the cross-coupled real dynamic stiffness coefficients are denoted as kΩ. The imaginary parts of the dynamic stiffness coefficients are modeled by frequency-independent direct C and cross-coupled c damping coefficients. Test results show that the leakage and rotordynamic coefficients are remarkable impacted by changes in inlet LVF. Leakage mass flow rate ṁ drops slightly as inlet LVF increases from zero to 2%, and then increases with further increasing inlet LVF to 8%. As inlet LVF increases from zero to 8%, KΩ generally decreases except it increases as inlet LVF increases from zero to 2% when PR = 0.43. kΩ increases virtually with increasing inlet LVF from zero to 2%. As inlet LVF further increases to 8%, kΩ decreases or remains unchanged. C increases as inlet LVF increases; however, its rate of increase drops significantly at inlet LVF = 2%. Effective damping Ceff combines the stabilizing impact of C and the destabilizing impact of kΩ. Ceff is negative (destabilizing) for lower Ω values and becomes more destabilizing as inlet LVF increases from zero to 2%. It then becomes less destabilizing as inlet LVF is further increased to 8%. Measured ṁ and rotordynamic coefficients are compared with predictions from XLHseal_mix, a program developed by San Andrés [1] based on a bulk-flow model, using the Moody wall-friction model while assuming constant temperature and a homogenous mixture. Predicted ṁ values are close to measurements when inlet LVF = 0 and 2%, and are larger than measured values when inlet LVF = 5% and 8%. As with measurements, predicted ṁ drops slightly as inlet LVF increases from zero to 2%, and then increases with increasing inlet LVF further to 8%. However, in the inlet LVF range of 2∼8%, the predicted effects of inlet LVF on ṁ are weaker than measurements. XLHseal_mix poorly predicts KΩ in most test cases. For all test cases, predicted KΩ decreases as inlet LVF increases from zero to 8%. The increase of KΩ induced by increasing inlet LVF from zero to 2% at PR = 0.43 is not predicted. C is reasonably predicted, and predicted C values are consistently smaller than measured results by 14∼34%. Both predicted and measured C increase as inlet LVF increases. kΩ and Ceff are predicted adequately at pure-air conditions, but not at most mainly-air conditions. The significant increase of kΩ induced by changing inlet LVF from zero to 2% is predicted. As inlet LVF increases 2% to 8%, predicted kΩ continue increasing versus that measured kΩ typically decreases. As with measurements, increasing inlet LVF from zero to 2% decreases the predicted negative values of Ceff, making the test seal more destabilizing. However, as inlet LVF increases further to 8%, the predicted negative values of Ceff drops versus measured values increase. For high inlet LVF values (5% and 8%), the predicted negative values of Ceff are smaller than measurements. So, the seal is actually more stable than predicted for high inlet LVF cases.


Author(s):  
Dung L. Tran ◽  
Dara W. Childs ◽  
Hari Shrestha ◽  
Min Zhang

Abstract Measured results are presented for rotordynamic coefficients and mass leakage rates of a long smooth annular seal (length-to-diameter ratio L/D = 0.75, diameter D = 114.686 mm, and radial clearance Cr = 0.200 mm) tested with a mixture of silicone oil (PSF-5cSt) and air. The test seal is centered, the seal exit pressure is maintained at 6.9 bars-g while the fluid inlet temperature is controlled within 37.8–40.6°C. It is tested with 3 inlet-preswirl inserts, namely, zero, medium, and high (the preswirl ratios, i.e., the ratio between the fluid’s circumferential velocity and the shaft surface’s velocity, are in ranges of 0.10–0.18, 0.30–0.65, and 0.65–1.40 for zero, medium, and high preswirls, respectively), 6 inlet gas-volume-fractions GVFi (0%, 2%, 4%, 6%, 8%, 10%), 4 pressure drops PD (20.7, 27.6, 34.5, 41.4 bars), and 3 speeds ω (3, 4, 5 krpm). The targeted test matrix could not be achieved for the medium- and high-preswirl inserts at PD ≥ 27.6 bars due to the test-rig stator’s dynamic instability issues. Spargers were used to inject air into the oil, and GVFi values higher than 0.10 could not be consistently achieved because of unsteady surging flow downstream from the sparger mixing section. Leakage mass flow rate ṁ and rotordynamic coefficients are measured, and the effect of changing inlet preswirl and GVFi are studied. The test results are then compared with predictions from a 2-phase, homogeneous-mixture, bulk-flow model developed in 2011. Generally, both measurements and predictions show little change in ṁ as inlet preswirl changes. Measured ṁ remains unchanged or slightly increases with increasing GVFi, but predicted ṁ decreases. Measured ṁ is comparable to predicted values but consistently lower. Dynamic-stiffness coefficients are measured using an ensemble of excitation frequencies and curve-fitted well by frequency-independent stiffness Kij, damping Cij, and virtual mass Mij coefficients. Planned tests with the medium and high-preswirl inserts could not be accomplished at PD = 34.5 and 41.4 bars because the seal stator became unstable with any finite injection of air. The test results show that the instability arose because the seal’s direct stiffness K became negative and increased in magnitude with increasing GVFi. The model predicts a drop in K as GVFi increases, but the test results dropped substantially more rapidly than predicted. Also, the model does not predict the observed strong tendency for K to drop with an increase in preswirl in moving from the zero-to-medium, and medium-to-high preswirl inserts. The authors believe that the observed drop in K due to increasing GVFi is not explained by either: (a) A reverse Lomakin effect from operating in the transition flow regime, or (b) The predicted drop in K at higher GVFi values from the model. A separate and as yet unidentified 2-phase flow phenomenon probably causes the observed results. The negative K results due to increasing GVFi and moving from the zero to medium, and medium to high preswirl observed here could explain the instability issue (sudden nonsynchronous vibration) on a high-differential-pressure helico-axial multiphase pump, reported in 2013. Effective damping Ceff combines the stabilizing effect of direct damping C, the destabilizing effect of cross-coupled stiffness k, and the influence of cross-coupled mass mq. As predicted and measured, increasing inlet preswirl significantly increases k and decreases Ceff, which decrease the seal’s stabilizing properties. Ceff increases with increasing GVFi — becomes more stable.


Author(s):  
Min Zhang ◽  
James E. Mclean ◽  
Dara W. Childs

A two-phase annular seal stand (2PASS) has been developed at the Turbomachinery Laboratory of Texas A&M University to measure the leakage and rotordynamic coefficients of division wall or balance-piston annular seals in centrifugal compressors. 2PASS was modified from an existing pure-air annular seal test rig. A special mixer has been designed to inject the oil into the compressed air, aiming to make a homogenous air-rich mixture. Test results are presented for a smooth seal with an inner diameter D of 89.306 mm, a radial clearance Cr of 0.188 mm, and a length-to-diameter ratio (L/D) of 0.65. The test fluid is a mixture of air and silicone oil (PSF-5cSt). Tests are conducted with inlet liquid volume fraction (LVF) = 0%, 2%, 5%, and 8%, shaft speed ω = 10, 15, and 20 krpm, and pressure ratio (PR) = 0.43, 0.5, and 0.57. The test seal is concentric with the shaft (centered), and the inlet pressure is 62.1 bar. Complex dynamic-stiffness coefficients are measured for the seal. The real parts are generally too dependent on excitation frequency Ω to be modeled by constant stiffness and virtual-mass coefficients. The direct real dynamic-stiffness coefficients are denoted as KΩ; the cross-coupled real dynamic-stiffness coefficients are denoted as kΩ. The imaginary parts of the dynamic-stiffness coefficients are modeled by frequency-independent direct C and cross-coupled c damping coefficients. Test results show that the leakage and rotordynamic coefficients are remarkable impacted by changes in inlet LVF. Leakage mass flow rate m˙ drops slightly as inlet LVF increases from zero to 2% and then increases with further increasing inlet LVF to 8%. As inlet LVF increases from zero to 8%, KΩ generally decreases except it increases as inlet LVF increases from zero to 2% when PR = 0.43. kΩ increases virtually with increasing inlet LVF from zero to 2%. As inlet LVF further increases to 8%, kΩ decreases or remains unchanged. C increases as inlet LVF increases; however, its rate of increase drops significantly at inlet LVF = 2%. Effective damping Ceff combines the stabilizing impact of C and the destabilizing impact of kΩ. Ceff is negative (destabilizing) for lower Ω values and becomes more destabilizing as inlet LVF increases from zero to 2%. It then becomes less destabilizing as inlet LVF is further increased to 8%. Measured m˙ and rotordynamic coefficients are compared with predictions from XLHseal_mix, a program developed by San Andrés (2011, “Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals,” ASME J. Eng. Gas Turbines Power, 134(2), p. 022503) based on a bulk-flow model, using the Moody wall-friction model while assuming constant temperature and a homogenous mixture. Predicted m˙ values are close to measurements when inlet LVF = 0% and 2% and are smaller than test results by about 17% when inlet LVF = 5% and 8%. As with measurements, predicted m˙ drops slightly as inlet LVF increases from zero to 2% and then increases with increasing inlet LVF further to 8%. However, in the inlet LVF range of 2–8%, the predicted effects of inlet LVF on m˙ are weaker than measurements. XLHseal_mix poorly predicts KΩ in most test cases. For all test cases, predicted KΩ decreases as inlet LVF increases from zero to 8%. The increase of KΩ induced by increasing inlet LVF from zero to 2% at PR = 0.43 is not predicted. C is reasonably predicted, and predicted C values are consistently smaller than measured results by 14–34%. Both predicted and measured C increase as inlet LVF increases. kΩ and Ceff are predicted adequately at pure-air conditions, but not at most mainly air conditions. The significant increase of kΩ induced by changing inlet LVF from zero to 2% is predicted. As inlet LVF increases from 2% to 8%, predicted kΩ continues increasing versus that measured kΩ typically decreases. As with measurements, increasing inlet LVF from zero to 2% decreases the predicted negative values of Ceff, making the test seal more destabilizing. However, as inlet LVF increases further to 8%, the predicted negative values of Ceff drop versus measured values increase. For high inlet LVF values (5% and 8%), the predicted negative values of Ceff are smaller than measurements. So, the seal is more stabilizing than predicted for high inlet LVF cases.


2003 ◽  
Vol 125 (2) ◽  
pp. 422-429 ◽  
Author(s):  
Mark Weatherwax ◽  
Dara W. Childs

Test results for leakage and rotordynamic coefficients are presented for a honeycomb-stator/smooth-rotor annular seal for eccentricity ratios out to 0.5 using air as the test fluid. Tests were conducted at supply pressures up to 70 bars and running speeds up to 20200 rpm. The seal has a diameter of 115 mm, a cell width of 0.79 mm, and a cell depth of 3.10 mm. Tests were conducted for the back-pressure ratios of 0.35, and 0.5. Comparisons are made to predictions from an analysis due to San Andres. The test results show a minimal sensitivity of either leakage or rotordynamic coefficients to changes in the eccentricity ratio. The predictions generally agree well with measurements.


Author(s):  
Dung L. Tran ◽  
Dara W. Childs ◽  
Hari Shrestha ◽  
Min Zhang

Abstract Measured results are presented for rotordynamic coefficients and mass leakage rates of a long smooth annular seal (length-to-diameter ratio L/D = 0.75, diameter D = 114.686 mm, and radial clearance Cr = 0.200 mm) tested with a mixture of silicone oil (PSF-5cSt) and air. The test seal is centered, the seal exit pressure is maintained at 6.9 bars-g while the fluid inlet temperature is controlled within 37.8–40.6 °C. It is tested with three inlet-preswirl inserts, namely, zero, medium, and high (the preswirl ratios (PSRs), i.e., the ratio between the fluid's circumferential velocity and the shaft surface's velocity, are in ranges of 0.10–0.18, 0.30–0.65, and 0.65–1.40 for zero, medium, and high preswirls, respectively), six inlet gas-volume fractions GVFi (0%, 2%, 4%, 6%, 8%, and 10%), four pressure drops PDs (20.7, 27.6, 34.5, and 41.4 bars), and three speeds ω (3, 4, and 5 krpm). The targeted test matrix could not be achieved for the medium- and high-preswirl inserts at PD ≥ 27.6 bars due to the test-rig stator's dynamic instability issues. Spargers were used to inject air into the oil, and GVFi values higher than 0.10 could not be consistently achieved because of unsteady surging flow downstream from the sparger mixing section. Leakage mass flow rate m˙ and rotordynamic coefficients are measured, and the effect of changing inlet preswirl and GVFi is studied. The test results are then compared with predictions from a two-phase, homogeneous-mixture, bulk-flow model developed in 2011. Generally, both measurements and predictions show little change in m˙ as inlet preswirl changes. Measured m˙ remains unchanged or slightly increases with increasing GVFi, but predicted m˙ decreases. Measured m˙ is comparable to predicted values but consistently lower. Dynamic-stiffness coefficients are measured using an ensemble of excitation frequencies and curve-fitted well by frequency-independent stiffness Kij, damping Cij, and virtual mass Mij coefficients. Planned tests with the medium- and high-preswirl inserts could not be accomplished at PD = 34.5 and 41.4 bars because the seal stator became unstable with any finite injection of air. The test results show that the instability arose because the seal's direct stiffness K became negative and increased in magnitude with increasing GVFi. The model predicts a drop in K as GVFi increases, but the test results dropped substantially more rapidly than predicted. Also, the model does not predict the observed strong tendency for K to drop with an increase in preswirl in moving from the zero-to-medium and medium-to-high preswirl inserts. The authors believe that the observed drop in K due to increasing GVFi is not explained by either (a) a reverse Lomakin effect from operating in the transition flow regime or (b) the predicted drop in K at higher GVFi values from the model. A separate and as yet unidentified two-phase flow phenomenon probably causes the observed results. The negative K results due to increasing GVFi and moving from the zero to medium, and medium to high preswirl observed here could explain the instability issue (sudden subsynchronous vibration) on a high-differential-pressure helico-axial multiphase pump (MPP), reported in 2013. Effective damping Ceff combines the stabilizing effect of direct damping C, the destabilizing effect of cross-coupled stiffness k, and the influence of cross-coupled mass mq. As predicted and measured, increasing inlet preswirl significantly increases k and decreases Ceff, which decreases the seal's stabilizing properties. Ceff increases with increasing GVFi—becomes more stable.


2007 ◽  
Vol 129 (2) ◽  
pp. 398-406 ◽  
Author(s):  
Dara W. Childs ◽  
Matthew Graviss ◽  
Luis E. Rodriguez

Test results are presented for a smooth seal and three centrally grooved seals that are representative of buffered-flow oil seals in centrifugal compressors. The seals are short (L∕D≅0.21), with a diameter of 117mm and a nominal radial clearance of 0.085mm, netting the clearance-to-radius ratio 0.0015. The grooves have groove depth to clearance ratios (Dg∕Cr) of 5, 10, and 15. Test conditions include three shaft speeds from 4000rpm to 10,000rpm, three inlet oil pressures from 24bar to 70bar, and seal eccentricity ratios from 0 (centered) to 0.7. Dynamic results include stiffness, damping, and added-mass coefficients; static results include stator position, attitude angles, and seal leakage. Stiffness, damping, and mass coefficients plus leakage are compared for the seal geometries. Results show that all rotordynamic coefficients consistently decrease with increasing seal groove depths, and seal leakage is largely unchanged. Comparisons are also made between experimental results and predictions from a computer program based on a Reynolds + energy equation model. The model includes the assumption that a groove is large enough to create separate lands within the seal, creating a zero or negligible pressure perturbation within the groove. Test results show that even the deepest groove depth tested is not deep enough to satisfy this assumption.


Author(s):  
Min Zhang ◽  
Dara W. Childs ◽  
Dung L. Tran ◽  
Hari Shrestha

Abstract The labyrinth seal is one of the most popular non-contact annular seals used in centrifugal compressors to improve machine efficiency by reducing the secondary flow leakage. Reducing the radial clearance Cr can effectively decrease the seal’s leakage and therefore increase the machine efficiency. However, reducing Cr can also introduce undesired effects on the machine’s vibration behaviors. This paper experimentally studies the impact of reducing Cr on the leakage and rotordynamic coefficients of a 16-tooth see-through labyrinth seal under wet-gas conditions. The test seal’s inner diameter is 89.256 mm. Two rotors with different diameters are used to obtain two radial clearances (0.102 mm and 0.178 mm). Tests are carried out at a supply pressure of 62 bars, three speeds from 10krpm to 20 krpm, three pressure ratios from 0.21 to 0.46, and six inlet liquid volume fractions (LVFs) from zero to 15%. The test fluid is a mixture comprised of air and silicon oil. Test results show that, for all pure-air and mainly-air conditions, decreasing Cr decreases (as expected) the test seal’s leakage mass flow rate. For all test cases, direct dynamic stiffness KΩ is negative, producing a negative centering force on the associated rotor. For inlet LVF ≤ 8%, the effects of decreasing Cr on KΩ are negligible. When inlet LVF = 12% and 15%, decreasing Cr increases KΩ (decreases the magnitude). In other words, when inlet LVF = 12% and 15%, decreasing Cr reduces the test seal’s negative centering force on the rotor, and would increase the critical speeds of the rotor. The value of the effective damping Ceff near 0.5ω represents the seal’s capability to suppress the rotor’s potential whirling motion at about 0.5ω. For all pure-air and mainly-air conditions, decreasing Cr generally increases the Ceff value near 0.5ω; i.e., decreasing Cr improves the test seal’s stabilizing capability against the rotor’s potential whirling motion at about 0.5ω.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Min Zhang ◽  
Dara W. Childs ◽  
Dung L. Tran ◽  
Hari Shresth

Abstract The labyrinth seal is one of the most popular noncontact annular seals used in centrifugal compressors to improve machine efficiency by reducing the secondary flow leakage. Reducing the radial clearance Cr can effectively decrease the seal's leakage and therefore increase the machine efficiency. However, reducing Cr can also introduce undesired effects on the machine's vibration behaviors. This paper experimentally studies the impact of reducing Cr on the leakage and rotordynamic coefficients of a 16-tooth see-through labyrinth seal under wet-gas conditions. The test seal's inner diameter is 89.256 mm. Two rotors with different diameters are used to obtain two radial clearances (0.102 mm and 0.178 mm). Tests are carried out at a supply pressure of 62 bars, three speeds from 10 krpm to 20 krpm, three pressure ratios from 0.21 to 0.46, and six inlet liquid volume fractions (LVFs) from zero to 15%. The test fluid is a mixture comprised of air and silicon oil. Test results show that, for all pure-air and mainly air conditions, decreasing Cr decreases (as expected) the test seal's leakage mass flowrate. For all test cases, direct dynamic stiffness KΩ is negative, producing a negative centering force on the associated rotor. For inlet LVF ≤ 8%, the effects of decreasing Cr on KΩ are negligible. When inlet LVF = 12% and 15%, decreasing Cr increases KΩ (decreases the magnitude). In other words, when inlet LVF = 12% and 15%, decreasing Cr reduces the test seal's negative centering force on the rotor, and would increase the critical speeds of the rotor. The value of the effective damping Ceff near 0.5ω represents the seal's capability to suppress the rotor's potential whirling motion at about 0.5ω. For all pure-air and mainly air conditions, decreasing Cr generally increases the Ceff value near 0.5ω; i.e., decreasing Cr improves the test seal's stabilizing capability against the rotor's potential whirling motion at about 0.5ω.


Sign in / Sign up

Export Citation Format

Share Document