Effect of Solidity on Non-Axisymmetric Endwall Contouring Performance in Compressor Linear Cascades

Author(s):  
Liu Xiwu ◽  
Jin Donghai ◽  
Gui Xingmin ◽  
Liu Xiaoheng ◽  
Guo Hanwen

This paper presents both the computational and experimental results to assess the effectiveness of non-axisymmetric endwall contouring in linear cascades under different solidities. Endwalls were designed by geometric scaling of a prior optimized endwall. The results show that the total pressure loss can be reduced by the contoured endwall (CEW) under different solidities. The mechanism of the improvement of CEW is that the adverse pressure gradient (APG) has been reduced mainly through the groove configuration near the leading edge of the suction surface. Besides, the cross-passage pressure gradient (CPG) has also been reduced, which has the benefits to further suppress the corner separation. Moreover, there is an optimum range of the solidity for the CEW. For a lower solidity, the performance of the CEW at +7 degree incidence presents a rapid deterioration, due to the risk of flow separation near the mid-span, for a higher solidity, the profile loss can be more dominant.

Author(s):  
Jun Ding ◽  
Shaowen Chen ◽  
Le Cai ◽  
Songtao Wang ◽  
Zhongqi Wang ◽  
...  

In this paper, the synergistic effect between compound lean and aspiration on the aerodynamic performance of compressor cascades is discussed. Preliminary experimental data verify the accuracy of the computational fluid dynamics method adopted, and a thorough study on reciprocal effect among lean angle, aspirated flow fraction and aspiration streamwise location is conducted. The calculations show that, due to the shorter streamwise length of the re-grown boundary layer against adverse pressure gradient, the aspiration location located farther downstream from the leading edge can minimize the loss of the blade passage flow. With the application of blade lean, which is similar to the flow control mechanism in the unaspirated cascades, an increase in pressure at the suction surface corner is used to migrate the low momentum fluid from the corners towards the midspan of the suction surface. Meanwhile, the reduced aspirated flow velocity and the improved favorable pressure gradient in the lean anterior plenum can reduce the entropy rise through the plenum. Simultaneously, the suction power required in the blade passage flow is reduced with blade lean, while the suction power for the aspirated flow through the plenum shows the opposite trend.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879960 ◽  
Author(s):  
Yanjie Zhao ◽  
Jingyin Li

The vaned diffuser has a significant impact on the performance and operating range of a centrifugal compressor stage, and multi-row vaned diffusers are applied to improve the compressor characteristics in this article. In order to validate the effectiveness of the present calculation method, the calculation results of the centrifugal compressor with the conventional diffuser have been verified by the experimental data. The simulation results reveal that, compared with the original model at design point, the isentropic efficiency increases by 2.8% and 4.1%, and the total pressure ratio increases by 1.9% and 3.4%, for the compressor stage with the two-row vaned diffuser and the three-row vaned diffuser, respectively. The models with multi-row vaned diffusers also give higher static pressure recovery coefficient and lower total pressure loss coefficient. A pressure gradient formed on vane suction surface near vane leading edge develops the flow separation in the conventional diffuser. The pressure gradient thus causes the secondary flow from hub to shroud on vane suction surface, aggravating the separation in the rear part of the conventional diffuser. The analysis of flow characteristics in diffuser passages also shows that using multi-row vaned diffusers can alleviate flow separation appearing in the diffuser passages.


Author(s):  
Ólafur H. Björnsson ◽  
Sikke A. Klein ◽  
Joeri Tober

Abstract The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter [1] for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4–5x. By simplifying the Lewis number dependent flame speed computation and by applying a generalized version of Stratford’s flow separation criterion [2], the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2° and 4° diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.


1975 ◽  
Vol 70 (3) ◽  
pp. 573-593 ◽  
Author(s):  
W. H. Schofield

The response of turbulent boundary layers to sudden changes in surface roughness under adverse-pressure-gradient conditions has been studied experimentally. The roughness used was in the ‘d’ type array of Perry, Schofield & Joubert (1969). Two cases of a rough-to-smooth change in surface roughness were considered in the same arbitrary adverse pressure gradient. The two cases differed in the distance of the surface discontinuity from the leading edge and gave two sets of flow conditions for the establishment and growth of the internal layer which develops downstream from a change in surface roughness. These conditions were in turn different from those in the zero-pressure-gradient experiments of Antonia & Luxton. The results suggest that the growth of the new internal layer depends solely on the new conditions at the wall and scales with the local roughness length of that wall. Mean velocity profiles in the region after the step change in roughness were accurately described by Coles’ law of the wall-law of the wake combination, which contrasts with the zero-pressure-gradient results of Antonia & Luxton. The skin-friction coefficient after the step change in roughness did not overshoot the equilibrium distribution but made a slow adjustment downstream of the step. Comparisons of mean profiles indicate that similar defect profile shapes are produced in layers with arbitrary adverse pressure gradients at positions where the values of Clauser's equilibrium parameter β (= δ*τ−10dp/dx) are similar, provided that the pressure-gradient history and local values of the pressure gradient are also similar.


Author(s):  
G. A. Zess ◽  
K. A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flow field measurements were performed in a large-scale, linear, vane cascade. The flow field measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flowfield results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


Author(s):  
Jie Wang ◽  
Qun Zheng ◽  
Lanxin Sun ◽  
Mingcong Luo

Generally, droplets are injected into air at inlet or interstage of a compressor. However, both cases did not consider how to utilize the kinetic energy of these moving droplets. Under the adverse pressure gradient of compressor, the lower energy fluids of blade surfaces and endwalls boundary layers would accumulate and separate. Kinetic droplets could accelerate the lower energy fluids and eliminate the separation. This paper mainly investigate the effective positions where to inject water and how to utilize the droplets’ kinetic energy. Four different injecting positions, which located on the suction surface and endwall, are chosen. The changes of vortexes in the compressor cascade are discussed carefully. In addition, the influences of water injection on temperature, total pressure losses and Mach number are analyzed. Numerical simulations are performed for a highly loaded compressor cascade with ANSYS CFX software.


Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xin Sun ◽  
Hang Zhao

Abstract In order to explore the similarities and differences between the flow fields of cantilever stator and idealized compressor cascade with tip clearance, and to extend the cascade leakage model to compressors, the influence of stator hub rotation to represent cascade and cantilever stator on hub leakage flow was numerically studied. On this basis, the control strategy and mechanism of blade root suction were discussed. The results show that there is no obvious influence on stall margin of the compressor whether the stator hub is rotating or stationary. For rotating stator hub, the overall efficiency is decreased while the total pressure ratio is increased. At peak efficiency point and near stall point, the efficiency is reduced by about 0.43% and 0.34% individually, while the total pressure ratio is enlarged by about 0.23% and 0.27%, respectively. The gap leakage flow is promoted due to stator hub rotation, and the structure of the leakage vortex is weakened obviously. In addition, the hub leakage flow originating from the blade leading edge of rotating hub may contribute to double leakage near the trailing edge of the adjacent blade. However, the leakage flow directly out of the blade passage with stationary stator hub. The stator root loading and strength of the leakage flow increase with the rotation of the hub, and the leakage vortex is further away from the suction surface of the blade and is stretched to an ellipse closer to the endwall under the shear action. The rotating hub makes the flow loss near the stator gap increase, while the flow loss in the upper part of the blade root is decreased. Meanwhile, the total pressure ratio in the end area is increased. Blade root suction of cantilever stator can effectively control the hub leakage flow, inhibit the development of hub leakage vortex, and improve the flow capacity of the passage, thereby reducing the flow loss and modifying the flow field in the end zone.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 523 ◽  
Author(s):  
Chang Lin ◽  
Wei-Ying Wong ◽  
Rajkumar V. Raikar ◽  
Hwung-Hweng Hwung ◽  
Ching-Piao Tsai

An experimental investigation is performed to elucidate the variations of accelerations and pressure gradients in the external stream of retreating flow during the run-down phase of a non-breaking solitary wave, propagating over a 1:3 sloping beach. Two solitary waves that have the incident wave heights (H0) of 2.9 and 5.8 cm, with respective still water depths (h0) of 8.0 and 16.0 cm (Cases A and B), were generated in a wave flume, resulting in the incident wave-height to water-depth ratios (H0/h0) being identically equal to 0.363. The latter case was only used to highlight the non-dimensional features of the wave celerity, the time history of horizontal velocity and the breaker type, which all exhibit similarity to those of the former. Two flow visualization techniques such as particle trajectory method and fluorescent dye strip and a high-speed particle image velocimetry (HSPIV) were utilized to provide the flow images and velocity fields. Based on the ensemble-averaged velocity fields and profiles, the partially depth-averaged (i.e., excluding the part in the boundary layer) values of accelerations and pressure gradient at a specified measuring section are then smoothed by a symmetric five-point smoothing scheme. Eventually, the smoothed values of the accelerations and pressure gradient are used to highlight the dynamic features of the external stream of retreating flow. It is found that, at the section of the incipient flow separation, the non-dimensional local acceleration (with respect to the gravity acceleration) in the offshore direction keeps increasing from the moment at which the run-up motion ends to the counterpart at which the incipient flow separation occurs. Afterwards, growth of the primary vortex develops with its core translating offshore. The corresponding non-dimensional local acceleration at the (moving) core section increases to a maximum of around 1.0 at the instant for occurrence of the hydraulic jump with abrupt rise of the free surface; and then decreases to zero at time for transformation of the curling jet into the projecting jet. The results exhibit that the external stream of retreating flow is accelerated temporally in the offshore direction for the interval between the time for the end of run-up motion and that for the formation of projecting jet. However, for later time interval up to generation of the two-phase flow field, the non-dimensional local acceleration in the offshore direction varies from zero to a negative maximum of −2.117 at the moment for the projecting jet heading downward before the impingement. It then decreases in magnitude continuously. The trend reveals that the external stream is decelerated temporally in the offshore direction for this later time interval. Further, at the section of the incipient flow separation, the non-dimensional pressure gradient (also with reference to the gravity acceleration) in the offshore direction increases from 0.225 for the time at which the run-up motion ends to 0.721 for the instant at which the incipient flow separation takes place. The trend highlights the external stream being under increasing adverse pressure gradient and more decelerated spatially with the increasing time, thus resulting in occurrence of the incipient flow separation. Afterwards, the value of the non-dimensional pressure gradient keeps increasing and eventually reaches a positive maximum of 2.011 and then decreases consecutively until the two-phase flow field is generated. In addition, due to the influence of acceleration of the external stream in the offshore direction, the non-dimensional vorticity of primary vortex core increases with increasing time up to the moment for occurrence of the projecting jet. Nevertheless, the non-dimensional vorticity of primary vortex core keeps decreasing with increasing time T for the later time interval due to the influence of deceleration of the external stream in the offshore direction. Finally, considerably large magnitudes of the non-dimensional accelerations and pressure gradient greater than 1.5 taking place at two non-dimensional times are worthy of noting. The negative maximum value of the non-dimensional convective acceleration equal to −2.005 appears at the instant for the occurrence of hydraulic jump. In addition, the negative maximum values of the non-dimensional local acceleration, total acceleration and pressure gradient unexpectedly as high as −2.117, −1.694 and 2.011, respectively, appear simultaneously at time for the projecting jet heading towards the retreating free surface. Under such a situation, the external stream of retreating flow is highly decelerated in the offshore direction under the fairly large adverse pressure gradient, thus forcing the retreating flow to move upwards rapidly. Meanwhile, the non-dimensional local acceleration in the vertical direction is surprisingly found to be 3.37. The result strongly reconfirms the evident rise of the free surface in the vicinity of the core section and reveals very rapid change from negative, via nearly zero, to positive vertical velocity.


Author(s):  
Xingxu Xue ◽  
Songtao Wang ◽  
Lei Luo ◽  
Xun Zhou

Numerical simulation was carried out to study the influences of blade-bowing designs based on a highly loaded cascade with large turning angle, while the compound bowing design showed much lower endwall loss than the conventional design in this study. Generally, it showed that the increased turning angle would strengthen the adverse pressure gradient on the suction surface, so the side effect of negative blade bowing angle would be enhanced because of the reduced flow filed stability near suction–endwall corner. However, the positive corner bowing angle that applied in the compound bowing design would enhance the flow field stability near the suction–endwall corner by adjusting spanwise pressure gradient and velocity triangle, so the side effect of negative blade bowing angle would be suppressed and lead to weaker secondary flow. In detail, the blade bowing angle (as well as the corner bowing angle in the conventional bowed cascades) was varied from −5° to −30° in this study, while the reductions of the loss coefficient in the compound bowed cascades were about 0.662.16 times higher (the absolute differences were about 0.0067 0.0097) than the corresponding conventional bowed cascades. Moreover, the Reynolds number and Mach number at the outlet plane were kept at 2.4 × 105 and 0.6, respectively, during the bowing design to ensure the comparability.


Sign in / Sign up

Export Citation Format

Share Document