The Heron Fan: Concept Description and Preliminary Aerothermodynamic Analysis

Author(s):  
Finn Schöning ◽  
Dragan Kozulovic

The Heron Fan is a new concept of a fuel powered jet engine that does not utilize a conventional core engine. The fan, a single axial compressor of high diameter, creates thrust, similar to a turbofan. Its blades are hollow with inner channels to transport the core air from the hub to the tip, inducing radial compression. The combustion chamber is located in the casing region, either integrated in the blades or in an external ring. After burning, the core air is returned to the blades and is blown out through an expansion device with a large component in circumferential direction. This propels the fan in the opposite direction. The expansion device may be realized by nozzles integrated in the blade trailing edge or by turbine stages integrated in the blade tip region. Subsequently, the core air mixes with the bypass air, which passes the fan axially, and ejects through the main nozzle, producing thrust. To achieve higher compression ratios, it is possible to install core air compressor stages ahead of the fan. The main purpose of this concept is to reduce weight and complexity of the engine, leading to lower production and operating costs. This is achieved by simplifying the engine architecture, integrating the functions and shortening some of the components. In particular, the core engine has been rearranged, thus eliminating the second and in some cases the third shaft. Further, the complete expansion and parts of the compression have been integrated in the fan blade. To assess the aero-thermodynamic parameters, a preliminary cycle analysis has been done, where the most influential parameters were varied. The results show, that the above listed benefits can be achieved while maintaining an efficiency comparable to conventional turbofans. Further, a feasibility study in terms of geometry, internal flow, component implementation and installation has been done, in order to qualify the concept and to identify the most critical aspects. To incorporate the corresponding thoughts and results, as well as to find and eliminate conceptual conflicts and opposing trends, a CAD model has been generated. Overall, the results are sound and encouraging, hence justifying future investigations. However, the Heron Fan concept also brings structural, thermal and aerodynamic challenges which are illustrated and briefly discussed, but still need detailed investigation.

Author(s):  
Young-Jin Jung ◽  
Tae-Gon Kim ◽  
Minsuk Choi

This paper addresses the effect of the recessed blade tip with and without a porous material on the performance of a transonic axial compressor. A commercial flow solver was employed to analyze the performance and the internal flow of the axial compressor with three different tip configurations: reference tip, recessed tip and recessed tip filled with a porous material. It was confirmed that the recessed blade tip is an effective method to increase the stall margin in an axial compressor. It was also found in the present study that the strong vortex formed in the recess cavity on the tip pushed the tip leakage flow backward and weakened the tip leakage flow itself, consequently increasing the stall margin without any penalty of the efficiency in comparison to the reference tip. The recessed blade tip filled with a porous material was suggested with hope to obtain the larger stall margin and the higher efficiency. However, it was found that a porous material in the recess cavity is unfavorable to the performance in both the stall margin and the efficiency. An attempt has been made to explain the effect of the recess cavity with and without a porous material on the flow in an axial compressor.


Author(s):  
Rick Bozak ◽  
Christopher Hughes ◽  
James Buckley

While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.


2011 ◽  
Vol 308-310 ◽  
pp. 1519-1522
Author(s):  
Fang Xie ◽  
Chang Jiang Liu ◽  
You Jun Wang

Numerical method using HI and HOH meshing combined B - L turbulent model and S - A turbulent model separately based on the Rotor 37 compressor Rotor was applied to the steady flow. results on pressure characteristic curve, stall point forecast etc were compared with related experimental data. This paper discussed calculation precision influenced by the turbulence model and numerical computation grid. This numerical investigation was basis for subsequent compressor internal flow field study.


1995 ◽  
Vol 117 (3) ◽  
pp. 487-490 ◽  
Author(s):  
S. A. Khalid

The relationship between turbomachinery blade circulation and tip clearance vortex circulation measured experimentally is examined using three-dimensional viscous flow computations. It is shown that the clearance vortex circulation one would measure is dependent on the placement of the fluid contour around which the circulation measurement is taken. Radial transport of vorticity results in the magnitude of the measured clearance vortex circulation generally being less than the blade circulation. For compressors, radial transport of vorticity shed from the blade tip in proximity to the endwall is the principal contributor to the discrepancy between the measured vortex circulation and blade circulation. Further, diffusion of vorticity shed at the blade tip toward the endwall makes it impossible in most practical cases to construct a fluid contour around the vortex that encloses all, and only, the vorticity shed from the blade tip. One should thus not expect agreement between measured tip clearance vortex circulation and circulation around the blade.


2021 ◽  
Author(s):  
Ayush Saraswat ◽  
Subhra Shankha Koley ◽  
Joseph Katz

Abstract Ongoing experiments conducted in a one-and-half stages axial compressor installed in the JHU refractive index-matched facility investigate the evolution of flow structure across blade rows. After previously focusing only on the rotor tip region, the present stereo-PIV (SPIV) measurements are performed in a series of axial planes covering an entire passage across the machine, including upstream of the IGV, IGV-rotor gap, rotor-stator gap, and downstream of the stator. The measurements are performed at flow rates corresponding to pre-stall condition and best efficiency point (BEP). Data are acquired for various rotor-blade orientations relative to the IGV and stator blades. The results show that at BEP, the wakes of IGV and rotor are much more distinct and the wake signatures of one row persists downstream of the next, e.g., the flow downstream of the stator is strongly affected by the rotor orientation. In contrast, under pre-stall conditions, the rotor orientation has minimal effect on the flow structure downstream of the stator. However, the wakes of the stator blades, where the axial momentum is low, are now wider. For both conditions, the flow downstream of the rotor is characterized by two regions of axial momentum deficit in addition to the rotor wake. A deficit on the pressure side of the rotor wake tip is associated with the tip leakage vortex (TLV) of the previous rotor blade, and is much broader at pre-stall condition. A deficit on the suction side of the rotor wake near the hub appears to be associated with the hub vortex generated by the neighboring blade, and is broader at BEP. At pre-stall, while the axial momentum upstream of the rotor decreases over the entire tip region, it is particularly evident near the rotor blade tip, where the instantaneous axial velocity becomes intermittently negative. Downstream of the rotor, there is a substantial reduction in mean axial momentum in the upper half of the passage, concurrently with an increase in the circumferential velocity. Consequently, the incidence angle upstream of the stator increases in certain regions by up to 30 degrees. These observations suggest that while the onset of the stall originates from the rotor tip flow, one must examine its impact on the flow structure in the stator passage as well.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781401989721 ◽  
Author(s):  
Haiou Sun ◽  
Meng Wang ◽  
Zhongyi Wang ◽  
Song Wang ◽  
Franco Magagnato

To improve the understanding of unsteady flow in modern advanced axial compressor, unsteady simulations on full-annulus multi-stage axial compressor are carried out with the harmonic balance method. Since the internal flow in turbomachinery is naturally periodic, the harmonic balance method can be used to reduce the computational cost. In order to verify the accuracy of the harmonic balance method, the numerical results are first compared with the experimental results. The results show that the internal flow field and the operating characteristics of the multi-stage axial compressor obtained by the harmonic balance method coincide with the experimental results with the relative error in the range of 3%. Through the analysis of the internal flow field of the axial compressor, it can be found that the airflow in the clearance of adjacent blade rows gradually changes from axisymmetric to non-axisymmetric and then returns to almost completely axisymmetric distribution before the downstream blade inlet, with only a slight non-axisymmetric distribution, which can be ignored. Moreover, the slight non-axisymmetric distribution will continue to accumulate with the development of the flow and, finally, form a distinct circumferential non-uniform flow field in latter stages, which may be the reason why the traditional single-passage numerical method will cause certain errors in multi-stage axial compressor simulations.


Author(s):  
Nagaraj K. Arakere

Hot section components in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys such as PWA1480, PWA1484, CMSX-4 and Rene N-4 as these materials provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over their polycrystalline counterparts. Fatigue failures in PWA1480 single crystal nickel-base superalloy turbine blades used in the Space Shuttle Main Engine (SSME) fuel turbopump are discussed. During testing many turbine blades experienced Stage II non-crystallographic fatigue cracks with multiple origins at the core leading edge radius and extending down the airfoil span along the core surface. The longer cracks transitioned from stage II fatigue to crystallographic stage I fatigue propagation, on octahedral planes. An investigation of crack depths on the population of blades as a function of secondary crystallographic orientation (β) revealed that for β = 45+/- 15 degrees tip cracks arrested after some growth or did not initiate at all. Finite element analysis of stress response at the blade tip, as a function of primary and secondary crystal orientation, revealed that there are preferential β orientations for which crack growth is minimized at the blade tip. To assess blade fatigue life and durability extensive testing of uniaxial single crystal specimens with different orientations has been tested over a wide temperature range in air and hydrogen. A detailed analysis of the experimentally determined Low Cycle Fatigue (LCF) properties for PWA1480 and SC 7-14-6 single crystal materials as a function of specimen crystallographic orientation is presented at high temperature (75 F – 1800 F) in high-pressure hydrogen and air. Fatigue failure parameters are investigated for LCF data of single crystal material based on the shear stress amplitudes on the 24 octahedral and 6 cube slip systems for FCC single crystals. The max shear stress amplitude [Δτmax] on the slip planes reduces the scatter in the LCF data and is found to be a good fatigue damage parameter, especially at elevated temperatures. The parameter Δτmax did not characterize the room temperature LCF data in high-pressure hydrogen well because of the noncrystallographic eutectic failure mechanism activated by hydrogen at room temperature. Fatigue life equations are developed for various temperature ranges and environmental conditions based on power-law curve fits of the failure parameter with LCF test data. These curve fits can be used for assessing blade fatigue life.


Author(s):  
Kirubakaran Purushothaman ◽  
Sankar Kumar Jeyaraman ◽  
Ajay Pratap ◽  
Kishore Prasad Deshkulkarni

This study discusses in detail the aeroelastic flutter investigation of a transonic axial compressor rotor using computational methods. Fluid structure interaction approach is used in this method to evaluate the unsteady aerodynamic force and work done of a vibrating blade in CFD domain. Energy method and work per cycle approach is adapted for this flutter prediction. A framework has been developed to estimate the work per cycle and aerodynamic damping ratio. Based on the aerodynamic damping ratio, occurrence of flutter is estimated for different inter blade phase angles. Initially, the baseline rotor blade design was having negative aerodynamic damping at part speed conditions. The main cause for this flutter occurrence was identified as large flow separation near blade tip region due to high incidence angles. The unsteadiness in the flow was leading to aerodynamic force fluctuation matching with natural frequency of blade, resulting in excitation of the blades. Hence axially skewed slot casing treatment was implemented to reduce the flow separation at blade tip region to alleviate the onset of flutter. By this method, the stall margin and aerodynamic damping of the test compressor was improved and flutter was avoided.


Author(s):  
June Chung ◽  
Jeonghwan Shim ◽  
Ki D. Lee

A three-dimensional (3D) CFD-based design method for high-speed axial compressor blades is being developed based on the discrete adjoint method. An adjoint code is built corresponding to RVC3D, a 3D turbomachinery Navier-Stokes analysis code developed at NASA Glenn. A validation study with the Euler equations indicates that the adjoint sensitivities are sensitive to the choice of boundary conditions for the adjoint variables in internal flow problems and constraints may be needed on internal boundaries to capture proper physics of the adjoint system. The design method is demonstrated with inverse design based on Euler physics, and the results indicate that the adjoint design method produces efficient 3D designs by drastically reducing the computational cost.


Author(s):  
Minsuk Choi ◽  
Junyoung Park ◽  
Jehyun Baek

A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow and the loss characteristics in a low-speed axial compressor operating at the design condition (φ = 85%) and near stall condition (φ = 65%). At the design condition, independent of the inlet boundary layer thickness, flows in the axial compressor show similar characteristics such as the pressure distribution, size of hub corner-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. But, as the load is increased, for the thick inlet boundary layer at hub and casing, the hub corner stall grows to make a large separation region between the hub and suction surface, and the tip leakage flow is more vortical than that observed in the case with thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is suddenly turned to the downstream. For the thin inlet boundary layer, the hub corner stall decays to form the thick boundary layer from hub to midspan on the suction surface owing to the blockage of the tip leakage flow and the tip leakage flow leans to the circumferential direction more than at the design condition. In addition to these, the severe reverse flow, induced by both boundary layers on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in a heavy loss. As a result of these differences of the internal flow made by the different inlet boundary layer thickness, the spanwise distribution of the total loss is changed dramatically. At the design condition, total pressure losses for two different boundary layers are almost alike in the core flow region but the larger losses are generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total loss for thick inlet boundary layer is found to be greater than that for thin inlet boundary layer on most of the span except the region near the hub and casing. In order to analyze effects of inlet boundary layer thickness on total loss in detail, total loss is scrutinized through three major loss categories available in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.


Sign in / Sign up

Export Citation Format

Share Document