Open Rotor Engine Cycle Modeling and Performance Assessment

Author(s):  
Ziyu Zhang ◽  
Li Zhou ◽  
Xiaobo Zhang ◽  
Zhanxue Wang

Abstract Aiming to enable dramatic reductions in the environment impact and fuel consumption of future civil aviation, NASA and European related research institutions are committed to developing new concepts and technologies in which counter rotating open rotor (CROR) concept can achieve this objective. In order to evaluate its potential impact, an open rotor engine performance model needs to be established. This paper presents the modeling method of an open rotor engine with the geared counter rotating open rotor (GOR) as object, and implements it in an in-house modular program of gas turbine performance prediction. In addition, the steady-state performance of the model is analyzed, and the model accuracy is verified based on the existing data. On this basis, the performance of open rotor engine and high bypass ratio turbofan engine is compared and results show that the counter rotating open rotor engine has obvious fuel saving advantages.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Francesco S. Mastropierro ◽  
Joshua Sebastiampillai ◽  
Florian Jacob ◽  
Andrew Rolt

Abstract This paper provides design and performance data for two envisaged year-2050 engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general arrangements, sizes, and weights. Reduced thrust requirements reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed to model the engines and details of individual components. The engines are optimized and compared with “baseline” year-2000 turbofans and an anticipated year-2025 open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with year-2050 “reference” engines, highlights tradeoffs between reduced specific fuel consumption (SFC) and increased engine weight and diameter. These parameters are converted into mission fuel burn variations using linear and nonlinear trade factors (NLTF). The final turbofan has an optimized design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4, for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometer compared to the respective “baseline” engine–aircraft combination. The open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometer relative to its baseline.


Author(s):  
Joshua Sebastiampillai ◽  
Florian Jacob ◽  
Francesco S. Mastropierro ◽  
Andrew Rolt

Abstract The paper provides design and performance data for two envisaged year-2050 state-of-the-art engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general powerplant arrangements, sizes and weights. Reduced thrust requirements for future aircraft reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed, using the software PROOSIS, to model the engines and details of individual components, including custom elements for the open rotor engine. The engines are optimised and compared with ‘baseline’ year-2000 turbofans and an anticipated year-2025 entry-into-service open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with non-optimised year-2050 ‘reference’ engines, based on Top-of-Climb (TOC) thrust and bypass ratio, highlights the trade-offs between reduced specific fuel consumption (SFC) and increased weight and engine diameter. These parameters are then converted into mission fuel burn using linear and non-linear trade factors from aircraft models. The final turbofan has an optimised design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4 for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometre compared to the respective year-2000 baseline engine and aircraft combination. The final open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in aircraft passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometre relative to its year-2000 baseline.


Author(s):  
Linda Larsson ◽  
Tomas Gro¨nstedt ◽  
Konstantinos G. Kyprianidis

In this multidisciplinary study a geared open rotor configuration is assessed and compared to an ultra high bypass ratio geared turbofan engine. Both designs assume a 2020 entry into service level of technology. The specific thrust level for minimizing block fuel and the resulting engine emissions for a given mission is sought. The tool used contains models that effectively capture: engine performance, mechanical and aerodynamic design, engine weight, emissions, aircraft design and performance as well as direct operating costs. The choice of specific thrust is a complex optimization problem and several disciplines need to be considered simultaneously. It will be demonstrated, through multidisciplinary analysis, that the open rotor concept can offer a substantial fuel saving potential, compared to ducted fans, for a given set of design considerations and customer requirements.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


Author(s):  
Tashfeen Mahmood ◽  
Anthony Jackson ◽  
Syed H. Rizvi ◽  
Pericles Pilidis ◽  
Mark Savill ◽  
...  

This paper discusses thrust reverser techniques for a mixed exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance. The turbofan engine chosen for this study was CUTS_TF (Cranfield University Three Spool Turbofan) which is similar to Rolls-Royce TRENT 772 engine and the information available for this engine in the public domain is used for the engine performance analysis along with the Gas Turbine Performance Software, GasTurb 10. The CUTEA (Cranfield University Twin Engine Aircraft) which is similar to the Airbus A330 is used along side with the engine model for the thrust reverser performance calculations. The aim of this research paper is to investigate the effects on mixed exhaust engine performance due to the pivoting door type thrust reverser deployment. The paper looks into the engine off-design performance characteristics and how the engine components get affected when the thrust reverser come into operation. This includes the changes into the operating point of fan, IP compressor, HP compressor, HP turbine, IP turbine, LP turbine and the engine exhaust nozzle. Also, the reverser deployment effect on aircraft, deceleration time and landing distances are discussed.


Author(s):  
I. Roumeliotis ◽  
N. Aretakis ◽  
K. Mathioudakis ◽  
E. A. Yfantis

Any prime mover exhibits the effects of wear and tear over time, especially when operating in a hostile environment. Marine gas turbines operation in the hostile marine environment results in the degradation of their performance characteristics. A method for predicting the effects of common compressor degradation mechanisms on the engine operation and performance by exploiting the “zooming” feature of current performance modelling techniques is presented. Specifically a 0D engine performance model is coupled with a higher fidelity compressor model which is based on the “stage stacking” method. In this way the compressor faults can be simulated in a physical meaningful way and the overall engine performance and off design operation of a faulty engine can be predicted. The method is applied to the case of a twin shaft engine, a configuration that is commonly used for marine propulsion. In the case of marine propulsion the operating profile includes a large portion of off-design operation, thus in order to assess the engine’s faults effects, the engine operation should be examined with respect to the marine vessel’s operation. For this reason, the engine performance model is coupled to a marine vessel’s mission model that evaluates the prime mover’s operating conditions. In this way the effect of a faulty engine on vessels’ mission parameters like overall fuel consumption, maximum speed, pollutant emissions and mission duration can be quantified.


2004 ◽  
Vol 128 (1) ◽  
pp. 64-72 ◽  
Author(s):  
C. Romessis ◽  
K. Mathioudakis

A method for solving the gas path analysis problem of jet engine diagnostics based on a probabilistic approach is presented. The method is materialized through the use of a Bayesian Belief Network (BBN). Building a BBN for gas turbine performance fault diagnosis requires information of a stochastic nature expressing the probability of whether a series of events occurred or not. This information can be extracted by a deterministic model and does not depend on hard to find flight data of different faulty operations of the engine. The diagnostic problem and the overall diagnostic procedure are first described. A detailed description of the way the diagnostic procedure is set-up, with focus on building the BBN from an engine performance model, follows. The case of a turbofan engine is used to evaluate the effectiveness of the method. Several simulated and benchmark fault case scenarios have been considered for this reason. The examined cases demonstrate that the proposed BBN-based diagnostic method composes a powerful tool. This work also shows that building a diagnostic tool, based on information provided by an engine performance model, is feasible and can be efficient as well.


2014 ◽  
Vol 118 (1208) ◽  
pp. 1159-1179 ◽  
Author(s):  
S. Guérin ◽  
R. Schnell ◽  
R. G. Becker

Abstract At DLR’s Institute of Propulsion Technology, the prediction tools and multi-disciplinary optimisation strategies developed for turbofan engines have been extended to contra-rotating open rotors (CROR). Thereby the objective has been to appraise and improve the performance of CROR engines and thus to reduce their environmental impact. The present paper reviews the intermediate progress achieved in this scope. The prediction is based on analytical and CFD methods and covers the fields of engine performance analysis, aerodynamics and acoustics. The aerodynamic and acoustic results could be partly validated through the comparison to experimental data obtained from wind-tunnel tests. In a multi-disciplinary approach the aforementioned aspects are optimised together. First results of an aero-acoustic optimisation are presented. Furthermore this paper undertakes some comparison between high-bypass ratio turbofan engines and open-rotor concepts.


Author(s):  
Matthias Mu¨ller ◽  
Stephan Staudacher ◽  
Winfried-Hagen Friedl ◽  
Rene´ Ko¨hler ◽  
Matthias Weißschuh

The maintenance and reliability of aircraft engines is strongly influenced by the environmental and operating conditions they are subjected to in service. A probabilistic tool has been developed to predict shop visit arisings and respective maintenance workscope that depends on these factors. The tool contains a performance model of the engine and a number of physics-based damage mechanisms (at piece part level). The performance model includes variation of performance relevant parameters due to production scatter and delivers the conditions to determine the deterioration of the individual parts. Shop visit maintenance is modeled as a result of limitations to engine operation, e.g. reaching TGT limit, or mechanical deterioration. The influence of maintenance actions on engine performance is determined on component basis. The maintenance strategy can consist of proactive and reactive maintenance elements. The decision of repair or replacement of any single part is implemented through a sum of different logic rules in the model. The loading capacity scatter depends on the engine type and is operator independent. It is represented via data-driven distribution functions, in which the probabilities of failure, repair and replacement for each part are specified depending on the number of reference flight cycles. The loading variation is considered through a physics-based cycle weighting. The developed tool runs a Monte Carlo simulation in which a fleet of engines is modeled through their respective lifetime of maintenance and performance deterioration. Using an example it is shown that the model can describe the effects of varying environmental and operating conditions on part damage, and therefore engine maintenance cost and reliability.


Author(s):  
Hassan Abdullahi ◽  
Klaus-Juergen Schmidt

The process of engine design and development is very complex since it comprises various disciplines with their own sub-processes. In addition, the requirements the new generation of engines has to meet become more and more ambitious, which calls for the employment of new technologies. But this involves a very high risk with regard to fulfilling specification requirements, and also with regard to adherence to budgets as well as time frames. In this paper, an approach of risk monitoring during the engine design and development phase is presented. The approach uses Monte-Carlo simulations, which are based on an engine performance synthesis model. For the purpose, a helicopter engine is used as an example for demonstration of the method.


Sign in / Sign up

Export Citation Format

Share Document