scholarly journals Nonlinear Response and Stability of an Experimental Overhung Compressor Mounted With a Squeeze Film Damper

Author(s):  
William J. Gooding ◽  
Matthew A. Meier ◽  
Edgar J. Gunter ◽  
Nicole L. Key

Abstract This paper presents rotordynamic data obtained within a test facility studying the aerodynamics of a high-speed centrifugal compressor for aero-engine applications. The experimental overhung compressor is supported by two rolling element bearings. The compressor-end ball bearing is supported by an oil-fed squeeze film damper. After some period of operation, the compressor began to exhibit a unique nonlinear increase in the rotordynamic response followed by an unexpected subsynchronous whirl instability as the speed continued to increase. Finally, as the rotor speed was increased further, the rotor re-stabilized. A numerical model of the compressor system was created using a commercially available software suite. This model indicates the effective weight of the damper support has a significant effect on the frequency of the second critical speed. Increasing this weight causes the second critical speed, originally predicted at 35,200 RPM, to shift down to 15,650 RPM. This increase in the support weight is due to inertial interaction between the damper support and the surrounding static structure. The increased shaft deflection that occurs as the rotor passes through this shifted critical speed causes the damper to lockup, resulting in the increased response observed experimentally. At a slightly higher speed, Alford-type aerodynamic cross-coupling forces excite the two subsynchronous critical speeds. Finally, as the rotor departs from the second critical speed, the damper unlocks and is able to effectively suppress the Alford-type instabilities, allowing the rotor to return to stable operation.

Author(s):  
Jayaraman Kandasamy ◽  
B. L. Jaiswal ◽  
P. Sarasu ◽  
S. Sivaperumal ◽  
Dilli Babu ◽  
...  

High performance turbo machinery demands high shaft speeds, increased rotor flexibility, tighter clearances in flow passages, advanced materials, and increased tolerance to imbalances. Operation at high speeds induces severe dynamic loading with large amplitude journal motions at the bearing supports. Squeeze film dampers are essential components of high-speed turbo machinery since they offer the unique advantages of dissipation of vibration energy and isolation of structural components, as well as the capability to improve the dynamic stability characteristics of inherently unstable rotor-bearing systems. A bearing test rig is developed using 350 KW motor with variable frequency drive and has the potential of maximum operating speed up to 20,000 rpm. A squeeze film damper is used between the bearings and housing to reduce the unbalance forces transmitted to the pedestal by introducing an additional damping and thereby reduces the amplitude of vibration to acceptable level. The test rig instrumentation is capable of detecting bearing critical speed of the test rotor, and has been used for parametric studies and to monitor the temperature profile, vibration levels and pressure distribution of SFD oil film. The first critical speed of the test rotor is measured. The vibration level of the rotor system is increased with the rise of axial load together with speed. It is estimated that under all the conditions presence of oil in SFD zone reduces the vibration levels.


2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 14 ◽  
Author(s):  
Hans Meeus ◽  
Jakob Fiszer ◽  
Gabriël Van De Velde ◽  
Björn Verrelst ◽  
Wim Desmet ◽  
...  

Turbomachine rotors, supported by little damped rolling element bearings, are generally sensitive to unbalance excitation. Accordingly, most machines incorporate squeeze film damper technology to dissipate mechanical energy caused by rotor vibrations and to ensure stable operation. When developing a novel geared turbomachine able to cover a large power range, a uniform mechanical drivetrain needs to perform well over the large operational loading range. Especially, the rotor support, containing a squeeze film damper and cylindrical roller bearing in series, is of vital importance in this respect. Thus, the direct objective of this research project was to map the performance of the envisioned rotor support by estimating the damping ratio based on the simulated and measured vibration response during run-up. An academic test rig was developed to provide an in-depth analysis on the key components in a more controlled setting. Both the numerical simulation and measurement results exposed severe vibration problems for an insufficiently radial loaded bearing due to a pronounced anisotropic bearing stiffness. As a result, a split first whirl mode arose with its backward component heavily triggered by the synchronous unbalance excitation. Hence, the proposed SFD does not function properly in the lower radial loading range. Increasing the static load on the bearing or providing a modified rotor support for the lower power variants will help mitigating the vibration issues.


1977 ◽  
Vol 99 (4) ◽  
pp. 552-558 ◽  
Author(s):  
M. D. Rabinowitz ◽  
E. J. Hahn

The synchronous steady-state operation of a centrally preloaded single mass flexible rotor supported in squeeze film bearing dampers is examined theoretically. Assuming the short bearing approximation and symmetric motions, frequency response curves are presented exhibiting the effect of relevant system parameters on rotor excursion amplitudes and unbalance transmissibilities for both pressurized and unpressurized lubricant supply. Hence, the influence of rotor flexibility, rotor mass distribution, rotor speed, bearing dimensions, lubricant viscosity, support flexibility can be readily determined, allowing for optimal rotor bearing system design. It is shown that with pressurized bearing mounts, the possibility of undesirable operation modes is eliminated and a smooth passage through the first pin-pin critical speed of the rotor is feasible, while absence of pressurization significantly limits the maximum safe unbalance in the vicinity of this critical speed. Significant decrease in transmissibility and rotor excursion amplitudes over those obtainable with rigid mounts are shown to be a practical possibility, with consequent decrease in the vibration level of the rotor mounts and prolongation of rolling element bearing life, while maintaining acceptable rotor vibration amplitudes. A design example is included to illustrate the use of the data.


2003 ◽  
Vol 125 (2) ◽  
pp. 325-333 ◽  
Author(s):  
Luis San Andre´s ◽  
Sergio E. Diaz

Measurements of dynamic film pressures and high-speed photographs of the flow field in an open-ended Squeeze Film Damper (SFD) operating with natural free air entrainment are presented for increasing whirl frequencies (8.33–50 Hz), and a range of feed pressures to 250 kPa (37 psig). The flow conditions range from lubricant starvation (air ingestion) to a fully flooded discharge operation. The test dynamic pressures and video recordings show that air entrainment leads to large and irregular gas fingering and striation patterns. This is a natural phenomenon in SFDs operating with low levels of external pressurization (reduced lubricant through flow rates). Air ingestion and entrapment becomes more prevalent as the whirl frequency raises, and increasing the feed pressure aids little to ameliorate the loss in dynamic forced performance. As a result of the severity of air entrainment, experimentally estimated damping forces decrease steadily as the whirl frequency (operating speed) increases.


Author(s):  
Riccardo Ferraro ◽  
Michael Catanzaro ◽  
Jongsoo Kim ◽  
Michela Massini ◽  
Davide Betti ◽  
...  

The presence of high subsynchronous vibrations and other rotordynamic instabilities in steam turbines can prevent operation at full speed and/or full load. The destabilizing forces generating subsynchronous vibrations can be derived from bearings, seals, impellers or other aerodynamic sources. The present paper describes the case of an 11 MW steam turbine, driving a syngas centrifugal compressor train, affected by subsynchronous vibrations at full load. After the occurrence of anomalous vibrations at high load and a machine trip due to the high vibrations, the analysis of data collected at the site confirmed instability of the first lateral mode. Further calculations identified that the labyrinth seal at the balance drum was the main source of destabilizing effects, due to the high pre-swirl and the relatively tight seal clearance. The particular layout of the turbine, a passing-through machine with a combined journal/double thrust bearing on the steam admission side, together with the need for a fast and reliable corrective action limited the possible solutions. Based on the analyses performed, adjusting the clearance and preload of the journal bearings could not have ensured stable operation at each operating condition. The use of swirl brakes to reduce the steam pre-swirl at the recovery seal entrance would have required a lengthy overhaul of the unit and significant labor to access and modify the parts. The final choice was a drop-in replacement of only the rear bearing (on the steam exhaust side) with a bearing featuring integral squeeze film damper (ISFD) technology. In addition to being a time efficient solution, the ISFD technology ensured an effective tuning of stiffness and damping, as proven by the field results. The analyses carried out to understand the source of the subsynchronous vibrations and to identify possible corrective actions, as well as the comparison of rotordynamic data before and after the application of the bearing with ISFD technology, are discussed.


2019 ◽  
Vol 43 (3) ◽  
pp. 306-321 ◽  
Author(s):  
Maxime Perreault ◽  
Sina Hamzehlouia ◽  
Kamran Behdinan

In high-speed turbomachinery, the presence of rotor vibrations, which produce undesirable noise or shaft deflection and losses in performance, has brought up the need for the application of a proper mechanism to attenuate the vibration amplitudes. Squeeze-film dampers (SFDs) are a widely employed solution to the steady-state vibrations in high-speed turbomachinery. SFDs contain a thin film of lubricant that is susceptible to changes in temperature. For this reason, the analysis of thermohydrodynamic (THD) effects on the SFD damping properties is essential. This paper develops a computational fluid dynamics (CFD) model to analyze the THD effects in SFDs, and enabling the application of CFD analysis to be a base-line for validating the accuracy of analytical THD SFD models. Specifically, the CFD results are compared against numerical simulations at different operating conditions, including eccentricity ratios and journal whirl speeds. The comparisons demonstrate the effective application of CFD for THD analysis of SFDs. Additionally, the effect of the lubricant THDs on the viscosity, maximum and mass-averaged temperature, as well as heat generation rates inside the SFD lubricant are analyzed. The temperature of the lubricant is seen to rise with increasing whirl speed, eccentricity ratios, damper radial clearance, and shaft radii.


Author(s):  
Changhu Xing ◽  
Frank Horvat ◽  
Stefan Moldovan ◽  
Minel J. Braun

When cavitation takes place in the squeeze film damper (SFD), its types and extent affect the performance of the SFD significantly. Thus, a fundamental understanding of the incipience, formation and evolution of this phenomenon becomes important both for predicting the dynamic properties of the damper and for the practitioner designers. A test rig was set up to investigate the formation of the cavitation bubbles during the process of a steady-state operation. By adopting a crankshaft configuration, the SFD journal orbit can be fixed at a specified eccentricity. The journal position and its eccentricity are tracked by means of Bently proximity sensors. When cavitation takes place, its shape and evolution are recorded by a Photron APX-RS high speed camera. With the Dow Corning 200 lubricant, the gaseous bubbles form in a fern-leaf shape even at low whirling speed. The bubbles evolve to a miniature flattened shape and as the angular speed increases, the gaseous cavitation gives way or is joined by vaporous cavitation. With a further increase of whirling speed, the vaporous bubbles can be clearly seen to occupy a large area. The evolution of the cavitation can be explained by the Sommerfeld pressure curve as it relates to the gaseous and vaporous saturation pressure. The experimental results confirm the assumption made by these authors in the previous numerical simulations for the homogeneous cavitation models.


1993 ◽  
Vol 115 (2) ◽  
pp. 353-359 ◽  
Author(s):  
A. El-Shafei

A new concept for actively controlling high-speed rotating machinery is investigated both analyically and experimentally. The controlling mechanism consists of a hybrid squeeze film damper (patent pending) that can be adaptively controlled to change its characteristics according to the instructions of a controller. In an extreme case the hybrid damper can act as a long damper, which is shown to be effective in reducing the amplitude of vibration of rotating machinery. In the other extreme the hybrid damper acts as a short damper, which is shown to be effective in reducing the force transmitted to the support. In the long damper configuration the oil flow is circumferential, while in the short damper configuration the oil flow is predominantly axial. The hybrid damper is designed to operate in either the short or the long damper configuration by controlling the positions of two movable sealing rings. The hybrid damper was tested on a Bently Nevada Rotor Kit and it is shown experimentally that the long damper configuration is extremely efficient at controlling the amplitude of vibration and the short damper configuration reduces the force transmitted to the support.


1999 ◽  
Vol 122 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Yao Guozhi ◽  
Yap Fook Fah ◽  
Chen Guang ◽  
Meng Guang ◽  
Fang Tong ◽  
...  

In this paper, a new electro-rheological multi-layer squeeze film damper (ERMSFD in short) is designed first and the constitutional Reynolds equation is established. Then the behavior of the rotor system is analyzed, the vibration around the first critical speed is suppressed and an on/off control is proposed to control the large amplitude around the first critical speed. A control method is used to suppress the sudden unbalance response. Finally, experiments are carried out to investigate the behavior of the rotor system to prove the effectiveness of the ER damper to suppress the vibration around the critical speed and the sudden unbalance response. [S0739-3717(00)00301-9]


Sign in / Sign up

Export Citation Format

Share Document