Testing of Syntroleum Synthetic Diesels in Diesel Generators Suitable for Alaska

Author(s):  
Aseem Telang ◽  
Dennis Witmer ◽  
Chuen-Sen Lin ◽  
Jack Schmid ◽  
Thomas Johnson ◽  
...  

Sulfur free synthetic diesel fuels can be produced using gas to liquids (GTL) technology, and may prove useful as a substitute for conventional diesel fuels when oil reserves are depleted. With non-detectable amounts of sulfur and aromatics, these fuels should generate lower emissions and enable catalytic clean up. This paper presents the results of a durability test conducted on a Detroit Diesel Series 50 diesel engine-generator operating on two synthetic GTL diesel fuels. Besides providing a comparison of diesel emissions, the paper also provides a comparison of generator fuel efficiency and brake specific fuel consumption between the synthetic fuels and conventional diesel. Documented emissions include total hydrocarbons (THC), carbon monoxide (CO) and oxides of nitrogen (NOx). All tests on the diesel engine reported were conducted at the factory set injection timing. As the best performance of an engine on a particular fuel may be affected by injection timing, further tests of the synthetic fuels at different injection timings are needed and will be discussed in future work.

2021 ◽  
Vol 9 (1) ◽  
pp. 436-443
Author(s):  
M.Kannan, R.Balaji, R.T Sarath Babu, Chandrakant B. Shende, Ashish Selokar

The primary objective of this study is to discover the effects of injection timing on performance, emission and combustion characteristics effect of advanced and retarded injection timing of the engine fuelled with mahua oil biodiesel blends. The engine performance, combustion and emission characteristics of the mahua oil biodiesel blends (B20, B40, B60, B80and B100) are investigated in this experimentation without any modification of the diesel engine. At this advanced pressure t he efficiency of engine by means of CO, Unburned HC gases and smoke emissions with higher oxides of nitrogen was observed compared to diesel. The obtained results are compared with a neat diesel and mahua oil biodiesel blends are shown through the graphs. From this study, identifies optimum fuel blend of this work. Thus, the combustion of duration is similar in all variance in pressure. This research paved a way to bio-diesel in mahua oil mixture and draws best outcome in emission less and to maintain eco-friendly environment.  


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Pushpendra Kumar Sharma ◽  
Dilip Sharma ◽  
Shyam Lal Soni ◽  
Amit Jhalani

Excessive use of diesel engines and continuous increase in environmental pollution has drawn the attention of researchers in the area of the compression ignition engine. In this research article, an innovative investigation of the nonroad modified diesel engine is reported with the effective use of the hybrid Entropy-VIKOR approach. Hence, it becomes necessary to prioritize and optimize the performance defining criteria, which provides higher BTE along with lower emission simultaneously. The engine load, injection timing (Inj Tim), injection pressure (Inj Pre), and compression ratio (Com R) were selected as engine operating parameters for experimentation at the constant speed of 1500 rpm engine. The effect on engine performance parameters (BTE and BSEC) and emission (carbon monoxide (CO), total oxide of carbon (TOC), oxides of nitrogen (NOx), hydrocarbon (HC), and smoke) was studied experimentally. The optimum results were observed at load 10.32 kg, Inj Tim 20 deg btdc, Inj Pre 210 bar, and Com R 21:1 at which highest BTE of 22.24% and lowest BSEC of 16,188.5 kJ/kWh were obtained. Hybrid entropy-VIKOR approach was applied to establish the optimum ranking of the nonroad modified diesel engine. The experimental results and numerical simulation show that optimizing the engine operating parameters using the entropy-VIKOR multicriteria decision-making (MCDM) technique is applicable.


Author(s):  
Praveen Kandulapati ◽  
Chuen-Sen Lin ◽  
Dennis Witmer ◽  
Thomas Johnson ◽  
Jack Schmid ◽  
...  

Synthetic fuels produced from non-petroleum based feedstocks can effectively replace the depleting petroleum based conventional fuels while significantly reducing the emissions. The zero sulfur content and the near zero percentage of aromatics in the synthetic fuels make them promising clean fuels to meet the upcoming emissions regulations. However due to their significantly different properties when compared to the conventional fuels; the existing engines must be tested extensively to study their performance with the new fuels. This paper reports a detailed in-cylinder pressure measurement based study made on adaptability of the engine control module (ECM) of a modern heavy duty diesel engine to optimize the engine performance with the F-T diesel fuel. During this study, the F-T and Conventional diesel fuels were tested at different loads and various injection timing changes made with respect to the manufacturer setting. Results from these tests showed that the ECM used significantly different injection timings for the two fuels in the process of optimizing the engine performance. For the same power output the ECM used a 2° advance in the injection timing with respect to the manufacturer setting at the full load and 1° retard at the no load condition. While the injection timings used by the ECM were same for both the fuels at the 50% load condition. However, a necessity for further changes in the control strategies used by the ECM were observed to get the expected advantages with the F-T fuels.


1987 ◽  
Vol 109 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. C. Alkidas

The factors influencing premixed burning and the importance of premixed burning on the exhaust emissions from a small high-speed direct-injection diesel engine were investigated. The characteristics of premixed and diffusion burning were examined using a single-zone heat-release analysis. The mass of fuel burned in premixed combustion was found to be linearly related to the product of engine speed and ignition-delay time and to be essentially independent of the total amount of fuel injected. Accordingly, the premixed-burned fraction increased with increasing engine speed, with decreasing fuel-air ratio and with retarding injection timing. The hydrocarbon emissions did not correlate well with the premixed-burned fraction. In contrast, the oxides of nitrogen emissions were found to increase with decreasing premixed-burned fraction, indicating that diffusion burning, and not premixed burning, is the primary source of oxides of nitrogen emissions.


Author(s):  
Biplab K. Debnath ◽  
Ujjwal K. Saha ◽  
Niranjan Sahoo

Palm Oil Methyl Ester (POME) is a very promising alternative renewable biofuel. This is because it has a better cetane number and a comparable lower calorific value with respect to its competitors. However, due to difference in molecular composition and hence dissimilar properties, it does not perform proficiently in diesel engine with standard design and operating parameters. Therefore, a study is arranged to realize the effect of compression ratio variation on POME run in diesel engine. The load is varied from ‘no load’ to ‘full load’ with six equal intervals. During this study, standard diesel injection timing is maintained unaffected. The study conveys that at higher compression ratio, POME causes reduction in brake fuel consumption and thereby increases the engine efficiency. The increase in compression ratio also causes smoother combustion, lower ignition delay with early heat release than diesel operation. The detrimental emission quantities in the form of carbon monoxide, oxides of nitrogen and hydrocarbon emissions are also cut down with presence of POME in the diesel engine at high compression ratio. Thus, POME can be regarded as a good alternative fuel for diesel engine for locomotive applications.


Author(s):  
T-G Fang ◽  
R E Coverdill ◽  
C-F F Lee ◽  
R A White

An optically accessible high-speed direct-injection diesel engine was used to study the effects of injection angles on low-sooting combustion. A digital high-speed camera was employed to capture the entire cycle combustion and spray evolution processes under seven operating conditions including post-top-dead centre (TDC) injection and pre-TDC injection strategies. The nitrogen oxide (NO x) emissions were also measured in the exhaust pipe. In-cylinder pressure data and heat release rate calculations were conducted. All the cases show premixed combustion features. For post-TDC injection cases, a large amount of fuel deposition is seen for a narrower-injection-angle tip, i.e. the 70° tip, and ignition is observed near the injector tip in the centre of the bowl, while for a wider-injection-angle tip, namely a 110° tip, ignition occurs near the spray tip in the vicinity of the bowl wall. The combustion flame is near the bowl wall and at the central region of the bowl for the 70° tip. However, the flame is more distributed and centralized for the 110° tip. Longer spray penetration is found for the pre-TDC injection timing cases. Liquid fuel impinges on the bowl wall or on the piston top and a fuel film is formed. Ignition for all the pre-TDC injection cases occur in a distributed way in the piston bowl. Two different combustion modes are observed for the pre-TDC injection cases including a homogeneous bulky combustion flame at earlier crank angles and a heterogeneous film combustion mode with luminous sooting flame at later crank angles. In terms of soot emissions, NO x emissions, and fuel efficiency, results show that the late post-TDC injection strategy gives the best performance.


Author(s):  
A. K. Kathpal ◽  
Anirudh Gautam ◽  
Avinash Kumar Agarwal ◽  
R. Baskaran

The diesel fuel-injection system of ALCO DLW 251 engine consists of single cylinder injection pumps, delivery pipes, and fuel injector nozzles. Fuel injection into the combustion chamber through multi-hole nozzles delivers designed power and fuel efficiency. The two most important variables in a fuel injection system of a diesel engine are the injection pressure and injection timing. Proper timing of the injection process is essential for satisfactory diesel engine operation and performance. Injection timing needs to be optimised for an engine based on requirements of power, fuel economy, mechanical and thermal loading limitations, smoke and emissions etc. Since each of these requirements varies with the operating conditions, sometimes contrary to the requirements of the other parameters, the map of optimised injection timing can be very complex. The ALCO DLW 251 engine’s fuel injection pump is jerk type to permit accurate metering and timing of the fuel injected. The pump has a ported barrel and constant-stroke plunger incorporating a bottom helix for fuel delivery control with constant injection timing. From the point of view of good power and fuel economy, combustion should take place so that the peak firing pressure occurs at about 10–15° after TDC and is usually a few degrees after combustion starts. For this to happen, fuel should be injected at an appropriate time, depending on Injection delay and Ignition delay. Both these factors are dependent on the speed and load. Changing the operating point of the engine may change either one or both types of delay, altering the moment of start of combustion. Various researchers have shown that both the Injection and the Ignition delay are reduced as the engine speed is decreased resulting in advancement of injection timing at lower speeds (and loads). This condition will be corrected by varying the static injection timing, which can be achieved by providing a modified helix on the plunger to delay the start of fuel injection, for the lower speeds and loads. A new double helix (upper and lower helix) fuel injection pump for the ALCO DLW 251 16 V engine has been designed. The new fuel injection pump has been tested on the engine test cell at Research Designs & Standards Organisation and has shown an improvement of 1.2% in locomotive duty cycle fuel consumption. This paper describes the design & development of double helix fuel injection pump and discusses the engine tests completed to verify the projected improvements in fuel efficiency.


2021 ◽  
Vol 23 (05) ◽  
pp. 663-669
Author(s):  
D.D. Palande ◽  
◽  
N.C. Ghuge

The strict emission laws, deteriorating environmental conditions, the depletion of oil reserves and the increasing price of petroleum fuels have forced the world to find alternatives fuels. Biodiesel, the promising alternative fuel can be used in diesel engines with little or no modifications. The properties of biodiesel are similar to those of diesel fuels. It can use as a fuel in diesel engine by blending with diesel The use of non-edible oil is more beneficial as compared with edible oil. Various non-edible oil seeds like Jatropha, Karanja, Neem etc. are widely available in India. Among them, Karanja has a potential to be used for the production of biodiesel. Karanja, are multipurpose non-edible plants can be cultivated on any type of soil such as degraded forests, boundaries of roads and irrigation canals. Its seeds contain 27–39% of the oil. This paper provides a comprehensive review on the important contributions of researcher work on Karanja oil and its blend as alternative fuel for diesel engine .The performance parameters evaluated include brake specific fuel consumption, brake thermal efficiency and emission parameters of karanja bio diesel and its blends are described. It is observed that Karanja oil can be used as alternative fuel for diesel engine.


Author(s):  
David F. Merrion

Exhaust emissions from heavy-duty diesel engines have been legislated since the 1960’s and continue until 2010. Smoke emissions continue to be controlled but exhaust odor regulations were never promulgated. Gaseous emissions (oxides of nitrogen, carbon monoxide, hydrocarbons) were not regulated until 1973 and particulate matter first regulated in 1988. Emission regulations have been through several periods of cooperation between regulators and manufacturers but there have also been periods of conflict and lawsuits. The most recent issues are with the October 2002 requirements of the Consent Decrees signed by seven diesel engine manufacturers and USEPA/US DOJ/CARB. Also the 2007/2010 regulations are under review.


Sign in / Sign up

Export Citation Format

Share Document