Engine Strategies to Meet Phase-2 Greenhouse Gas Emission Legislation for Heavy-Duty Diesel Engines

Author(s):  
Satyum Joshi ◽  
Mufaddel Dahodwala ◽  
Erik Koehler ◽  
Michael Franke

In 2027, the fully phased-in EPA/NHTSA Phase-2 greenhouse gas (GHG) emission legislation for heavy-duty (HD) diesel engines will mandate a 5.1% reduction in fuel consumption for MY2017 tractor engines and a 4.2% reduction in fuel consumption for MY2017 vocational engines. Along with improvements in engine efficiency, manufacturers are likely to face a simultaneous challenge to achieve a significant reduction in tailpipe NOx emissions, as the ARB is expected to implement an ultra-low NOx emission standard in the 2024–27 timeframe. With this consideration, technology solutions for Phase-2 GHG will have to be NOx neutral or provide additional reduction in NOx emissions which is typically contrary to a reduction in fuel consumption. In this study, various advanced engine technologies — such as engine downsizing and downspeeding, variable compression ratio, cylinder deactivation and turbocompounding — have been evaluated to improve engine efficiency with a goal to reach Phase-2 GHG engine requirements. Simultaneously, the impact of these technologies on engine-out NOx emission and aftertreatment inlet temperature has also been evaluated. The technologies were evaluated with a GT-Power model of a 7.7 liter medium HD diesel engine applied in vocational vehicles at steady-state operating conditions as well as over transient operating profiles. Significant fuel consumption reductions were observed with engine downsizing and engine downspeeding at the same engine-out NOx emissions as the baseline engine. Cylinder deactivation showed a moderate impact on fuel consumption while variable compression ratio and turbocompounding had a much lower impact on fuel consumption. In general, exhaust gas temperatures decreased with a reduction in fuel consumption, except in the case of cylinder deactivation where significant increase in exhaust gas temperatures was observed. The results of the study show that engine efficiency improvements beyond what has been mandated by the Phase-2 GHG regulations are possible without increasing the engine-out NOx emissions of a Phase-1 GHG compliant engine. However, if an ultra-low NOx emission standard is implemented as expected, some of the efficiency gains demonstrated in this study will need to be offset to achieve higher exhaust gas temperatures and lower engine-out NOx emissions.

Author(s):  
Kuo Yang ◽  
Pingen Chen

Abstract Engine efficiency improvement is very critical for medium to heavy-duty vehicles to reduce Diesel fuel consumption and enhance U.S. energy security. The tradeoff between engine efficiency and NOx emissions is an intrinsic property that prevents modern Diesel engines, which are generally equipped with exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT), from achieving the optimal engine efficiency while meeting the stringent NOx emission standards. The addition of urea-based selective catalytic reduction (SCR) systems to modern Diesel engine aftertreatment systems alleviate the burden of NOx emission control on Diesel engines, which in return creates extra freedom for optimizing Diesel engine efficiency. This paper proposes two model-based approaches to locate the optimal operating point of EGR and VGT in the air-path loop to maximize the indicated efficiency of turbocharged diesel engine. Simulation results demonstrated that the engine brake specific fuel consumption (BSFC) can be reduced by up to 1.6% through optimization of EGR and VGT, compared to a baseline EGR-VGT control which considers both NOx emissions and engine efficiency on engine side. The overall equivalent BSFCs are 1.8% higher with optimized EGR and VGT control than with the baseline control. In addition, the influence of reducing EGR valve opening on the non-minimum phase behavior of the air path loop is also analyzed. Simulation results showed slightly stronger non-minimum phase behaviors when EGR is fully closed.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2018 ◽  
Vol 11 (6) ◽  
pp. 1109-1122 ◽  
Author(s):  
Mufaddel Dahodwala ◽  
Satyum Joshi ◽  
Erik W. Koehler ◽  
Michael Franke ◽  
Dean Tomazic

2012 ◽  
Vol 588-589 ◽  
pp. 173-177
Author(s):  
Jin Li

MMT had been used widely as an antiknock additive in petrol. It can enhancing the vehicles dynamic performance and reduces fuel consumption, but causes some negative impact on vehicle emissions. In this paper, the author research on the emission performance of a vehicle which meet Stage IV emission standard use gasoline containing MMT run for 50,000km.The test results show emission pollution such as CO, HC and NOx increased by MMT which result in three-way catalytic converter deterioration quickly. MMT also made the oxygen sensor deterioration and cause high NOx emission.


Author(s):  
Renaldas BARANAUSKAS ◽  
Risto ILVES ◽  
Arne KÜÜT ◽  
Jüri OLT

The article presents the tests of the engine Valmet 320 DS installed in the teststand "Schenck Dynas3 LI 250". For these tests biodiesel produced by JSC Rapsoila was used. The test was carried out causing the engine speed to 2600 rpm and loading gradually to maximum. Torque (Te), engine speed (ne), fuel consumption (Bf), the pressure in the cylinder (Pe) and exhaust gas CO, CO2, O2, HC, NOx were measured. Initially, measurements were carried out using biodiesel (RME). After that, biodiesel was added with the additive Valvoline VPS HD Diesel System Complete keeping a ratio of 100:1. In order to evaluate the effects of additives the engine was working two hours using biodiesel and additive mixture. After two hours the measurements were repeated loading the engine in the same mode. The work presents the results of tests carried out.


Author(s):  
Youssef Beltaifa ◽  
Sascha Holzberger ◽  
Ferhat Aslan ◽  
Maurice Kettner ◽  
Peter Eilts

Abstract In the medium and long term, cogeneration plants in Germany will play an important role in the transition towards a cleaner and more efficient electricity and heat generation, compared to the conventional uncoupled power plants. For most of the currently used CHP (Combined Heat and Power) units, which operate with a lean-burn process, the NOx emissions limit represents an obstacle to increasing the electrical efficiency. Therefore, the lean burn process has become less attractive because of stricter future NOx emissions limit. In this context, the stoichiometric combustion process with a three-way catalytic converter provides a solution. However, the present study shows that lean burn operation still has potential due to direct water injection into the combustion chamber. This work includes an experimental investigation of the impact of different injection parameters (beginning of injection timing, injection pressure difference and water-to-fuel ratio) on the effectiveness of direct water injection regarding the improvement of the trade-off between engine efficiency and NOx emissions. For the execution of the experimental investigations, a series-production CHP-engine was equipped with a direct injection system consisting of a high-pressure unit, a high-pressure pipe and a GDI-injector. For the injector integration, the cylinder head was machined sidewise (close to the exhaust gas valve). Furthermore, 3D CFD simulations of the injection process allowed gaining a deeper insight into the complex spray-flow interaction, wall film formation and evaporation at different injection timings. For the 3D CFD simulations, the spray model used was tuned with help of spray pictures, taken on the spray test bed. Water injection at the beginning of the intake stroke (330 °CA BFTDC) reduces NOx emissions most effectively. Moreover, it causes the least engine efficiency loss. The increase of the injection pressure difference (between 20 and 80 bar) leads to a significant increase of the engine efficiency. However, it has a secondary effect on the NOx emissions reduction. The lowest NOx emissions are reached with an injection pressure difference of 60 bar. The combination of direct water injection (at the beginning of the intake stroke, injection pressure difference of 60 bar) with earlier combustion phasings enables an increase in the engine efficiency and a simultaneous decrease in NOx emissions without loss in engine performance. Main drawbacks of water injection are longer combustion duration and higher CO and HC emissions. In addition, the lower exhaust gas temperature causes a deterioration of the conversion of the HC molecules in the oxidation catalyst and reduces the heat recovery efficiency of the CHP-system.


1990 ◽  
Vol 112 (3) ◽  
pp. 422-430 ◽  
Author(s):  
J. Workman ◽  
G. M. Beshouri

Single-cylinder testing of an Electronic Pilot Fuel Injection (EPFI) system (reported in Part I) indicated that a 45 percent reduction in NOx emissions could be obtained with a 3 percent improvement in fuel consumption by replacing the mechanical system, delivering 6 percent pilot, with the EPFI at 2.9 percent delivery. Further optimization testing of this system at pilot levels down to 0.7 percent over a wide range of timings and air/fuel ratios resulted in even further reductions in NOx emissions without fuel penalty. The EPFI system can yield NOx emissions levels significantly below 2 g/BHP-h with an improvment in fuel consumption of at least 3–4 percent, and probably yield emissions level as low as 0.5 g/BHP-h without substantial penalties in efficiency or operability.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5021
Author(s):  
Sokratis Stoumpos ◽  
Gerasimos Theotokatos

Dual fuel engines constitute a viable solution for enhancing the environmental sustainability of the shipping operations. Although these engines comply with the Tier III NOx emissions regulations when operating at the gas mode, additional measures are required to ensure such compliance at the diesel mode. Hence, this study aimed to optimise the settings of a marine four-stroke dual fuel (DF) engine equipped with exhaust gas recirculation (EGR) and air bypass (ABP) systems by employing simulation and optimisation techniques, so that the engine when operating at the diesel mode complies with the ‘Tier III’ requirements. A previous version of the engine thermodynamic model was extended to accommodate the EGR and ABP systems modelling. Subsequently, a combination of optimisation techniques including multiobjective genetic algorithms (MOGA) and design of experiments (DoE) parametric runs was employed to identify both the engine and the EGR/ABP systems settings with the objective to minimise the engine brake specific fuel consumption and reduce the NOx emissions below the Tier III limit. The derived simulation results were employed to analyse the EGR system involved interactions and their effects on the engine performance and emissions trade-offs. A sensitivity analysis was performed to reveal the interactions between considered engine settings and quantify their impact on the engine performance parameters. The derived results indicate that EGR rates up to 35% are required, so that the investigated engine with EGR and ABP systems, when operating at the diesel mode, achieves compliance with the ‘Tier III’ NOx emissions, whereas the associated engine brake specific fuel consumption penalty is up to 8.7%. This study demonstrates that the combination of EGR and ABP systems can constitute a functional solution for achieving compliance with the stringent regulatory requirements and provides a better understating of the underlined phenomena and interactions of the engine subsystems parameters variations for the investigated engine equipped with EGR and ABP systems.


Sign in / Sign up

Export Citation Format

Share Document