Potentiality of Yellow Oleander (Thevetia Peruviana) Seed Oil as an Alternative Diesel Fuel in Compression Ignition Engines

2021 ◽  
Author(s):  
Jyotirmoy Kakati ◽  
Tapan K. Gogoi ◽  
Sukhamoy Pal ◽  
Ujjwal K. Saha

Abstract Biodiesel has been accepted as a clean and an eco-friendly green diesel fuel by the entire world. In India, various non-edible oils have been tested for exploring their suitability as a fuel in diesel engines. In the north eastern states of India, many oil bearing seeds such as Koroch (a variety of Pongamia glabra), Nahar (Mesua ferrea), Terminalia (Terminalia belerica Robx), Kutkura (Meyna spinosa Roxb), Amari (Amoora Wallichii King), Yellow oleander (Thevetia peruviana) and others are found in abundance. In this article, the Yellow oleander seed oil (YOSO) has been investigated for biodiesel production and characterization. The oil content in Yellow oleander seed is found to be 63.87%. The free fatty acid (FFA) content in YOSO is measured, and is found to be 32.0%; hence the two-step acid-base catalysis transesterification process has been adopted for producing biodiesel from the YOSO. YOSO contains 5.03% palmitic, 6.92% stearic, 48.14% oleic and 31.37% linoleic acid. The density, calorific value and kinematic viscosity of Yellow oleander fatty acid methyl ester (YO-FAME) are 879.7 kg/m3, 40.159 MJ/kg and 4.63 mm2/s respectively. Most of the fuel properties of YO-FAME meet ASTM D6751 and EN 14214 biodiesel standards. The YO-FAME exhibits a low sulphur content of 13.0 ppm and a high cetane number of 58.3. Fire point and pour point of YO-FAME were found to be 158°C and 5°C respectively. The physio-chemical properties of YO-FAME has been compared with FAME of Yellow oleander, Ratanjot (Jatropha curcus), Terminalia (Terminalia belerica Robx.) and Nahar (Mesua ferrea).

2016 ◽  
Author(s):  
Tapan Kumar Gogoi ◽  
Jyotirmoy Kakati

In this article, biodiesel produced from Terminalia seed oil is characterized. Oil content in Terminalia fruit seed was found to be 46.0%. Free fatty acid (FFA) content in Terminalia seed oil was 6.0%; hence a twostep acid base catalyzed transesterification process was used for producing biodiesel from the Terminalia seed oil. Terminalia seed oil contains 23.47% palmitic, 8.04% stearic 37.90% oleic and 20.97% linoleic acid. Calorific value, kinematic viscosity and density of Terminalia fatty acid methyl ester (FAME) were 39.594 MJ/kg, 5.49 mm2/s and 890.6 kg/m3 respectively. Most of the fuel properties of Terminalia FAME meet ASTM D6751 and EN 14214 biodiesel standards. Cetane index, fire point and pour point of Terminalia FAME were found to be 54.92, 172°C and −1°C respectively. Further, an engine performance study with 10% (B10) and 20% (B20) blending of Terminalia FAME with diesel fuel shows higher brake specific fuel consumption (BSFC), lower brake thermal efficiency (BTE), higher peak pressure and early pressure rise in case the blends compared to petroleum based diesel fuel. Terminalia seed thus could be potential feedstock for biodiesel production and its 10% blending with conventional diesel fuel could be used in engine without compromising with the engine performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Adewale Adewuyi ◽  
Paul O. Awolade ◽  
Rotimi Ayodele Oderinde

Oil was extracted from the seed of Hura crepitans using hexane in a soxhlet extractor and analyzed for iodine value, saponification value and free fatty acid content. The dominant fatty acid in the oil was C18:2 (52.8±0.10%) while the iodine value was 120.10±0.70 g iodine/100 g. Biodiesel was produced from the oil using a two-step reaction system involving a first step of pretreatment via esterification reaction and a second step via transesterification reaction. The pretreatment step showed that free fatty acid in Hura crepitans seed oil can be reduced in a one-step pretreatment of esterification using H2SO4 as catalyst. The biodiesel produced from Hura crepitans seed oil had an acid value of 0.21±0.00 mg KOH/g, flash point of 152 ± 1.10°C, copper strip corrosion value of 1A, calorific value of 39.10±0.30 mJ/kg, cetane number of 45.62±0.30, and density of 0.86±0.02 g cm−3. The process gave a biodiesel yield of 98.70±0.40% with properties within the recommended values of EN 14214.


Tibuana ◽  
2019 ◽  
Vol 2 (02) ◽  
pp. 36-39
Author(s):  
Yanatra budi Pramana

Biodiesel production from calophyllum inophyllum be obtained via esterification and transesterification,  using two continuous reactors with catalyst NaOH at a concentration (0.4 ;0.6,0.8; 1) wt%,  calophyllum inophyllum seed oil and reaction temperature (40, 50,60)oC. This research was to determine the effect of catalyst amount and reaction temperature on transesterification of calophyllum inophyllum seed toward yield Fatty Acid Methyl Ester . The last step is analysis  yield of  Fatty Acid Methyl Ester with Gas Chromatography (GC). The highest yield is obtained on the amount of 1% NaOH catalyst and at a temperature of 60oC with   yield of  87.036%.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4290 ◽  
Author(s):  
Inam Ullah Khan ◽  
Zhenhua Yan ◽  
Jun Chen

Production of biodiesel from non-edible oils is one of the effective methods to reduce production costs and alleviate the obstacle of traditional raw material supply. Rhus typhina L. (RT) is a promising non-edible plant because it grows fast and has abundant seeds. But previously reported oil content of RT was only 9.7% and 12%. Further research into improving the biodiesel production of RT seed oil is urgently needed. Here we obtained the biodiesel production of RT with a maximum oil content of 22% with a low free fatty acid content of 1.0%. The fatty acid methyl ester (FAMEs) of the RT seed oil was produced by a standard optimized protocol use KOH as a catalyst with the highest yield of 93.4% (w/w). The quality and purity of RT FAMEs, as well as the physio-chemical characterizations of the biodiesel products, were investigated and compared with the international standard of ASTM D6751 and EN 14214. The values of fuel properties are comparable with mineral diesel and environmentally friendly. Overall, the proposed RT seed oil could be a potential source of raw materials for producing high-quality biodiesel after the optimization and transesterification.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Sayeda M. Abdo ◽  
Guzine I. El Diwani ◽  
Kamel M. El-Khatib ◽  
Sanaa A. Abo El-Enin ◽  
Mohammed I. El-Galad ◽  
...  

Abstract Background Microalgae cells can be identified as a potential source for new and renewable energy. The economic investigation for biodiesel and bio-active compound production from the microalgae community (Bloom), which are collected from the high rate algal pond (HRAP) constructed to treat municipal wastewater at Zenin wastewater treatment plant, Giza, was the main target of study. Results The microscopical examination showed that Scenedesmus obliquus is the dominant species. The total carotenoids were extracted using jojoba oil and determined by high-performance liquid chromatography (HPLC) to reach 81.44 μg/g. The biodiesel production through acid transesterification reaction recorded 70.6% of fatty acid methyl ester content with high cetane number (44) and low acid value. Such results prove that the obtained biodiesel has better ignition quality. The total phenolic and flavonoid compounds have been derived from the remaining biomass to give 5.36 ± 0.03 and 1.50 ± 0.19 mg/g respectively. Finally, total proteins and carbohydrates content in algal cells were recorded 54.3 and 1.5 mg/g successively Conclusion The preliminary economic evaluation showed that the production of biodiesel and carotenoids from the microalgae growing in municipal wastewater can be considered, as a techno-economic feasible process.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Katalin Szabo ◽  
Francisc Vasile Dulf ◽  
Bernadette-Emőke Teleky ◽  
Panagiota Eleni ◽  
Christos Boukouvalas ◽  
...  

The circular economy action plan involves principles related to food waste reduction and integration of recovered nutrients to the market. In this context, the present study aims to highlight the valuable bioactive components found in tomato processing by-products (carotenoids, phenolic compounds and fatty acids) influenced by industrial pre-treatments, particularly cold break (CB) process at 65–75 °C and hot break (HB) process at 85–95 °C. The fatty acid profile of the tomato seed oil was examined by gas chromatography coupled to mass spectrometry (GC-MS), individual carotenoid and phenolic compositions were determined by high performance liquid chromatography (HPLC) and the viscoelastic properties were evaluated by rheological measurements. The physicochemical properties revealed appropriate characteristics of the tomato seed oil to fit the standards of generally accepted edible oils, for both CB and HB derived samples, however, significant qualitative and quantitative differences were detected in their phenolic composition and carotenoids content. Lycopene (37.43 ± 1.01 mg/100 mL) was a major carotenoid in the examined samples, linoleic acid was the main fatty acid (61.73%) detected in the tomato seed oil and syringic acid appeared to be one of two major phenolic acids detected in the samples of CB process. Our findings extend the boundaries of tomato processing industry by validating that tomato seed oil is a bioactive rich edible oil with additional health benefits, which can be integrated in functional food products.


2021 ◽  
Vol 36 (1) ◽  
pp. 53-66
Author(s):  
C. Esonye ◽  
O. D Onukwuli ◽  
S. O. Momoh

Currently the major challenge of biodiesel application as a replacement to petrodiesel is its industrial production sustainability.Consequently, the successful scale-up of laboratory results in transesterification requires so much information obtained through chemical kinetics.This paper presents the kinetics and thermodynamic study of alkali-homogeneous irreversible methanolysis of seed oil derived from African pear. The transesterification process was carried out from 0-100 minutes at temperature range of 55-65°C. The reaction mixture compositions were ascertained using gas chromatography- flame ionization detector (GC-FID) technique. Rate constants of the triglyceride (Tg), diglycerides (Dg) and monoglycerides(Mg) hydrolysis were in the range of 0.0140- 0.07810 wt%/min and increased with increase in temperature. The rate of reaction was found to increase with increase in temperature. Activation energies were found to be 6.14, 20.01 and 28.5kcal/mol at 55, 60 and 65oC respectively. Tg hydrolysis to Dg was observed asthe rate determining step while the reaction agreed with second order principles. A biodiesel yield of 93.02% was obtained with cloud point of 10°C , flash point of 125°C , pour point of 4°C , calorific value of 34.4MJ/kg, and cetane number of 54.90 which satisfy EN14214 and ASTM D 6751 standards. Results presented in this report would serve as idealized conditions for industrial scale up of biodiesel production from African pear seed oil. Keywords:Kinetics; methanolysis; rate constants; activation energy; African pear seed oil; biodiesel


Sign in / Sign up

Export Citation Format

Share Document