Testing of a Microchannel Partial Condenser and Phase Separator in Reduced Gravity

Author(s):  
Ward E. TeGrotenhuis ◽  
Victoria S. Stenkamp

Heat exchange has been successfully integrated with microchannel phase separation concepts to produce devices capable of simultaneous partial condensation and phase separation in reduced gravity. An air-cooled microchannel condenser has been tested on NASA’s KC-135 reduced gravity aircraft. The condenser was fed a mixture of air and water vapor at 70–95°C, which was cooled to below 40°C thereby generating water condensate. The condensate was successfully collected and removed as a separate stream over a range of operating conditions, thereby achieving simultaneous condensation and phase separation. Ambient air was used to cool in cross-flow with inches of water pressure drop. The microchannel device is presented along with an explanation of the principles of operation. Phase separation effectiveness and heat exchanger performance are reported for reduced gravity testing. Heat fluxes, effectiveness, and overall heat transfer coefficients are reported.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2674 ◽  
Author(s):  
Yifei Lv ◽  
Jun Lu ◽  
Yongcai Li ◽  
Ling Xie ◽  
Lulu Yang ◽  
...  

The heat source tower (HST), as a cleaner energy production, which can absorb the low-grade energy from ambient air to drive the heat pump unit without emissions has attracted more and more interest. In addition, HST has excellent economic applicability by using cooling tower equipment, which was idle in winter. However, there are few studies on comparative analysis of thermal behavior between counter-flow and cross-flow HST. A mathematical model suitable for both HST types was developed to identify the performance discrepancies between them. Then a parametric study was carried out in order to investigate the impact of solution and air as well as packing material properties on energy transfer of HSTs. Finally, the characteristics of solution dilution and dehumidification were investigated. As the inlet solution temperature increases, increases first, then decreases gradually, but a transition point occurs in the solution at −5 °C. Moreover, the transition section of moisture transfer direction for counter-flow HST was located in the 0.78 m and 0.26–1.56 m of packing material height, under the condition that the air relative humidity was 50%. In summary, this work intuitively indicates the thermal performance difference between counter-flow and cross-flow HST, also could assist the selection of proper operating conditions in HSTs.


Author(s):  
Jessica Sheehan ◽  
Avram Bar-Cohen

Heat transfer to an evaporating refrigerant and/or dielectric liquid in a microgap channel can provide very high heat transfer coefficients and volumetric cooling rates. Recent studies at Maryland have established the dominance of the annular flow regime in such microgap channels and related the observed high-quality peak of an M-shaped heat transfer coefficient curve to the onset of local dryout. The present study utilizes infrared thermography to locate such nascent dryout regions and operating conditions. Data obtained with a 210 micron microgap channel, operated with a mass flux of 195.2 kg/m2-s and heat fluxes of 10.3 to 26 W/cm2 are presented and discussed.


Author(s):  
Hakim Maloufi ◽  
Hanqing Xie ◽  
Andrew Zopf ◽  
William Anderson ◽  
Christian Langevin ◽  
...  

Currently, there is a number of Generation-IV SuperCritical Water-cooled nuclear-Reactor (SCWR) concepts under development worldwide. These high temperature and pressure reactors will have significantly higher operating parameters compared to those of current water-cooled nuclear-power reactors (i.e., “steam” pressures of about 25 MPa and “steam” outlet temperatures up to 625 °C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated, as the steam will be flowing directly to a steam turbine. In support of developing SCWRs studies are being conducted on heat transfer at SuperCritical Pressures (SCPs). Currently, there are very few experimental datasets for heat transfer at SCPs in power-reactor fuel bundles to a coolant (water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations developed with bare-tube data can be used as a conservative approach. Selected empirical heat-transfer correlations, based on experimentally obtained datasets, have been put forward to calculate Heat Transfer Coefficients (HTCs) in forced convective in various fluids, including water at SCPs. The Mokry et al. correlation (2011) has shown a good fit for experimental data at supercritical conditions within a wide range of operating conditions in Normal and Improved Heat-Transfer (NHT and IHT) regimes. However, it is known that a Deteriorated Heat-Transfer (DHT) regime appears in bare tubes earlier than that in bundle flow geometries. Therefore, it is important to know if bare-tube heat-transfer correlations for SCW can predict HTCs at heat fluxes beyond those defined as starting of DHT regime in bare tubes. The Mokry et al. (2011) correlation fits the best SCW experimental data for HTCs and inner wall temperature for bare tubes at SCPs within the NHT and IHT regimes. However, this correlation might have problems with convergence of iterations at heat fluxes above 1000 kW/m2.


Author(s):  
Amjad Farah ◽  
Krysten King ◽  
Sahil Gupta ◽  
Sarah Mokry ◽  
Wargha Peiman ◽  
...  

This paper presents an extensive study of heat-transfer correlations applicable to supercritical-water flow in vertical bare tubes. A comprehensive dataset was collected from 33 papers by 27 authors, including more than 125 graphs and wide ranges of parameters. The parameters ranges were as follows: pressures 22.5–34.5 MPa, inlet temperatures 85–350°C, mass fluxes 250–3400 kg/m2s, heat fluxes 75–5,400 kW/m2), tube heated lengths 0.6–27.4 m, and tube inside diameters 2–36 mm. This combined dataset was then investigated and analyzed. Heat Transfer Coefficients (HTCs) and wall temperatures were calculated using various existing correlations and compared to the corresponding experimental results. Three correlations were used in this comparison: Bishop et al., Mokry et al. and modified Swenson et al. The main objective of this study was to select the best supercritical-water bare-tube correlation for HTC calculations in: 1) fuel bundles of SuperCritical Water-cooled Reactors (SCWRs) as a preliminary and conservative approach; 2) heat exchangers in case of indirect-cycle SCW Nuclear Power Plants (NPPs); and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs from SCW side. From the beginning, all these three correlations were compared to the Kirillov et al. vertical bare-tube dataset. However, this dataset has a limited range of operating conditions in terms of a pressure (only one pressure value of 24 MPa) and one inside diameter (only 10 mm). Therefore, these correlations were compared with other datasets, which have a much wider range of operating conditions. The comparison showed that in most cases, the Bishop et al. correlation deviates significantly from the experimental data within the pseudocritical region and actually, underestimates the temperature at most times. On the other hand, the Mokry et al. and modified Swenson et al. correlations showed a relatively better fit within the most operating conditions. In general, the modified Swenson et al. correlation showed slightly better fit with the experimental data than other two correlations.


Author(s):  
Marko Tirovic ◽  
Stergios Topouris ◽  
Glenn Sherwood

The paper compares heat dissipation characteristics of two interchangeable ventilated brake discs, a standard solid hub and a newly developed fingered hub version, both single piece cast designs. The tests were conducted on a specially developed Thermal Flow Rig, which enables disc induction heating to 450°C and cooling for a range of rotational and air speeds, in parallel and angular cross flow. The Rig facilitated very accurate and repeatable experiments to be conducted for numerous combinations of operating conditions. From the recorded cooling curves, average heat transfer coefficients for convection and radiation were extracted and the results also presented in a generic form, using Nusselt numbers. The fingered design demonstrated superior convective heat dissipation, with the improvements varying depending on the rotational speed, air cross flow velocity and angle, as well as disc temperature. The gains were ranging from 3.5% to over 20%. The fingered design is 8.5% lighter and being a single piece cast disc, it remains inexpensive to mass produce.


Author(s):  
Santosh Krishnamurthy ◽  
Yoav Peles

Flow boiling of water across a bank of circular staggered micro pin fins, 250 μm long and 100 μm diameter with pitch-to-diameter ratio of 1.5, was experimentally studied for mass fluxes ranging from 346 kg/m2s to 794 kg/m2s and surface heat fluxes ranging from 20 W/cm2 to 350 W/cm2. The local two-phase heat transfer coefficients were measured using thermistors located along the flow path of the channel. The flow was visualized and classified as vapor slug and annular flow patterns. Based on the observed flow patterns, the dominant heat transfer mechanism during boiling process was assumed to be convective boiling.


2004 ◽  
Vol 126 (2) ◽  
pp. 710-715 ◽  
Author(s):  
K. Gommed ◽  
G. Grossman ◽  
F. Ziegler

In earlier work, a novel open absorption cycle was proposed, capable of producing both cooling and dehumidification for air conditioning, utilizing low-grade heat. The system, referred to as DER (Dehumidifier-Evaporator-Regenerator), uses ambient air in conjunction with an absorbent solution; the air is dehumidified and then employed to produce chilled water in an evaporative cooler. Alternatively, a portion of the dehumidified air may be used directly for air conditioning purposes. The system thus has the potential to provide both cooling and dehumidification in variable ratios, as required by the load. Computer simulations and theoretical investigations were carried out to analyze and predict the performance of the system. The objective of the present study has been to construct a laboratory system to test the concept, identify problems and carry out preliminary design optimization. The characteristic performance of individual components, analyzed theoretically in the simulation, was studied experimentally. Measurements have provided much-needed realistic data about heat and mass transfer coefficients. The performance of the system has been studied under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the resulting transfer coefficients.


1992 ◽  
Vol 25 (10) ◽  
pp. 149-162 ◽  
Author(s):  
V. L. Pillay ◽  
C. A. Buckley

Cross-flow microfiltration (CFMF) has potentially wide application in the processing of industrial and domestic waste waters. Optimum design and operation of CFMF systems necessitates a knowledge of the characteristic system behaviour, and an understanding of the mechanisms governing this behaviour. This paper is a contribution towards the elucidation and understanding of the behaviour of a woven fibre CFMF operated in the turbulent flow regime. The characteristic flux-time curve and effects of operating variables on flux are presented for a limestone suspension cross-flow filtered in a 25 mm woven fibre tube. The phenomena contributing to the shape of the flux-time curve are discussed. A model of the mechanisms governing cake growth and limit is presented. Predicted steady-state fluxes show a notably good correspondence with experimentally measured values. It is also found that the flux may not be uniquely defined by the operating conditions, but may also be a function of the operating path taken to reach the operating point. This is of significance in the start-up and operation of CFMF units.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 830
Author(s):  
Viktor Vajc ◽  
Radek Šulc ◽  
Martin Dostál

Heat transfer coefficients were investigated for saturated nucleate pool boiling of binary mixtures of water and glycerin at atmospheric pressure in a wide range of concentrations and heat fluxes. Mixtures with water mass fractions from 100% to 40% were boiled on a horizontal flat copper surface at heat fluxes from about 25 up to 270kWm−2. Experiments were carried out by static and dynamic method of measurement. Results of the static method show that the impact of mixture effects on heat transfer coefficient cannot be neglected and ideal heat transfer coefficient has to be corrected for all investigated concentrations and heat fluxes. Experimental data are correlated with the empirical correlation α=0.59q0.714+0.130ωw with mean relative error of 6%. Taking mixture effects into account, data are also successfully correlated with the combination of Stephan and Abdelsalam (1980) and Schlünder (1982) correlations with mean relative error of about 15%. Recommended coefficients of Schlünder correlation C0=1 and βL=2×10−4ms−1 were found to be acceptable for all investigated mixtures. The dynamic method was developed for fast measurement of heat transfer coefficients at continuous change of composition of boiling mixture. The dynamic method was tested for water–glycerin mixtures with water mass fractions from 70% down to 35%. Results of the dynamic method were found to be comparable with the static method. For water–glycerin mixtures with higher water mass fractions, precise temperature measurements are needed.


Sign in / Sign up

Export Citation Format

Share Document