Electrical Tomography Sensing and Dielectrophoresis in Microchannel for 3D Particle Mixing

Author(s):  
Nur Tantiyani Ali Othman ◽  
Je-Eun Choi ◽  
Masahiro Takei

The present study describes the electrical tomography sensing and dielectrophoresis (DEP) force for visualize the 3D particle mixing in the microchannel system. In the presence of non-uniform electric fields generated by point microelectrodes, the dynamic distribution behaviors of a polystyrene particle and deionized water had been investigated in this system. Microchannel was fabricated with five cross sections where 12 electrodes were installed for each measurement plane. In this experiment, the relationship between electric field frequency and DEP force of particles are calculated at different electric frequencies and diameter of particles. The applied electric field intensities are E = ±1 V/mm, ±3 V/mm and ±5 V/mm while the electric field frequencies are f = 1 kHz, 10 kHz, 100 kHz and 1 MHz and the diameter of particles are 1.3μm, 1.5μm and 2.0μm are investigated in this experiment. Simultaneously, imaged by manipulating tomography sensing at cross section A, C and D and the coupled DEP forces at cross section B and D, the particles flowing had been visualized and concentrate uniformly at near the outlets. The electrical capacitances and DEP forces between the electrode pairs of the microchannel were measured and the ECT tomograms representing the particle distribution were constructed from the measured capacitance data for each cross section in microchannel.

2017 ◽  
Vol 48 (3) ◽  
pp. 616-633 ◽  
Author(s):  
G. Farina ◽  
S. Alvisi ◽  
M. Franchini

This paper presents a procedure for estimating discharge in a river cross-section based on the combined use of dimensionless isovels and point velocity measurements. Specifically, taking the Biot–Savart law on the magnetic field induced by an electric current in a wire as their basis as already done by other researchers, the authors propose a new formulation of the relationship characterizing the effect of the wetted perimeter on the range of velocities in a cross-section in order to take explicit account of roughness, expressed by means of Manning's coefficient. Once appropriately nondimensionalized, the isoeffect contours can be read as dimensionless isovels. Assuming in situ velocity measurements are available, discharge at a cross-section can be computed using two different methods. The proposed procedure was applied to six case studies characterized by river cross-sections which differed greatly from one another. The results show that the two methods proposed for estimating discharge lead to equivalent outcomes, and in all the cases the procedure as a whole enables a sufficiently accurate estimation of discharge, even when it is based on a limited number of velocity measurements or on the measurement of maximum surface-water velocity alone.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


Author(s):  
Xi Zhang ◽  
Wenyuan Wu ◽  
Yanchun Gong ◽  
Suhong He ◽  
Fangping Wu ◽  
...  

Abstract The nonlocal effects of dimers consisted of two cylinders are studied, whose cross section is elliptical. Importantly, the results with dimers whose cross section is circular are compared. For comparison, the curvature of the ellipse is set the same with the circle, and four different geometries are considered. The electric field enhancement at the gap center and the absorption spectrum of the dimers are calculated. For the second geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the first geometry, the frequencies corresponding to the peaks are totally different. Similarly, for the fourth geometry, either the electric field enhancement at the gap center or the absorption spectrum is approximately calculated using the third geometry, the disciplines of the peak values change as radius of curvature increases are totally different.


Materials ◽  
2003 ◽  
Author(s):  
Subramanian Sankaran ◽  
Jeffrey S. Allen ◽  
Leonard Gumennik

The effect of dc electric fields on destabilization of a vapor microlayer formed during film boiling at various subcooling levels is investigated. High voltage electric fields up to 2000 volts were applied between a 127 μm heater wire and a screen electrode that is concentrically placed at a radius of 25 mm. The qmax and qmin heat fluxes were also measured for the various subcooling and electric field strengths. Up to 50% increase in the qmax and the qmin heat fluxes were observed when using the electric fields in this range of experimental parameters. The relationship among subcooling level for a given fluid, the heat flux level, and the electric field strength required to reach the qmin condition is of interest. The preliminary experimental results and the bubble departure and transition boiling patterns resulting from destabilization of the vapor microlayer are discussed.


1984 ◽  
Vol 47 (3) ◽  
pp. 1023-1026
Author(s):  
Yu. K. Solomatnikov ◽  
A. G. Usmanov ◽  
D. M. Mikhailov

The second-order differential equation which expresses the equilibrium condition of an electron swarm in a uniform electric field in a gas, the electrons suffering both elastic and inelastic collisions with the gas molecules, is solved by the Jeffreys or W.K.B. method of approximation. The distribution function F(ε) of electrons of energy ε is obtained immediately in a general form involving the elastic and inelastic collision cross-sections and without any restriction on the range of E/p (electric strength/gas pressure) save that introduced in the original differential equation. In almost all applications the approximation is likely to be of high accuracy, and easy to use. Several of the earlier derivations of F(ε) are obtained as special cases. Using the function F(ε) an attempt is made to relate the Townsend ionization coefficient a to the properties of the gas in a more general manner than hitherto, using realistic functions for the collision cross-section. It is finally expressed by the equation α/ p = A exp ( — Bp/E ) in which A and B are functions involving the properties of the gas and the ratio E/p . The important coefficient B is directly related to the form and magnitude of the total inelastic cross-section below the ionization potential and can be evaluated for a particular gas once the cross-section is known experimentally. The present theory shows clearly the influence of E/p on both A and B, a matter which has not been satisfactorily discussed previously. The theory is illustrated by calculations of F (ε) and a/p for hydrogen over a range of E/p from 10 to 1000. The agreement between the calculated results and recent reliable observations of α/ p is surprisingly good considering the nature of the calculations and the wide range of E/p .


Sign in / Sign up

Export Citation Format

Share Document