Bending Failure Behavior of Recycled Aluminum Reinforced Composites

Author(s):  
Brian M. June ◽  
Ramana M. Pidaparti ◽  
Hazim El-Mounayri

Abstract In order to effectively use the recycled aluminum cans, many applications of aluminum are being explored. One of the most obvious applications is to reinforce with wood or others, to form sandwich composites. The goal of the proposed work is to conduct the research to develop constructional products, which would permit reuse of aluminum cans instead of destroying the structure by melting or trashing. With that goal in mind, our specific objective of this study is to evaluate the stiffness and failure behavior of recycled aluminum reinforced composites under three-point bending for use in composite industries. Composite specimens containing the end sections of the can sandwiched between top and bottom layers of wood are investigated. The results of bending stiffness and failure behavior of sandwich composite panels obtained from the three-point bending tests are presented and discussed.

2012 ◽  
Vol 567 ◽  
pp. 146-149 ◽  
Author(s):  
Xue Mei Fan ◽  
Jian Feng Wang ◽  
Cheng Jin Duan ◽  
Xiang Xin Xia ◽  
Zhao Hui Wang

In order to analyze the mechanical properties of Carbon/epoxy facings-Aluminum honeycomb sandwich structure, we simulated panels of different layers and core thickness using ABAQUS finite element analysis program. And three-point bending tests and shear tests were made on the same panels using electronic universal testing machine. In addition, we also made the same three-point bending tests on steel tubes to get a comparison with honeycomb sandwich panels. It could be seen that, the simulated results were basically identified with experimental results. The results indicated that core thickness played an important role in the panels’ bulking modulus, and number of carbon fiber layers decided the shear strength. As a whole, honeycomb sandwich structure was suitable for use in the car body with good mechanical properties under premise of lighter.


2020 ◽  
Vol 837 ◽  
pp. 41-45
Author(s):  
Shuai Sun ◽  
Kai Hua Liu

In order to determine the evolution features of deformation twins for TA2 commercial pure titanium (cp-TA2), the TA2 samples were bent under different bending angles in three-point bending tests via a universal testing machine. The electron backscatter diffraction (EBSD) technique was applied to identify the grain boundaries (GBs) and twin boundaries (TBs) in the bending areas. The results reveal that the type of deformation area would effect the evolution of different deformation twins. It is inferred that the state of stress would promote the multiplication of the same type of deformation twins.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3522
Author(s):  
Marta Caballero-Jorna ◽  
Marta Roig-Flores ◽  
Pedro Serna

The use of synthetic fibers in fiber-reinforced concretes (FRCs) is often avoided due to the mistrust of lower performance at changing temperatures. This work examines the effect of moderate temperatures on the flexural strengths of FRCs. Two types of polypropylene fibers were tested, and one steel fiber was employed as a reference. Three-point bending tests were carried out following an adapted methodology based on the standard EN 14651. This adapted procedure included an insulation system that allowed the assessment of FRC flexural behavior after being exposed for two months at temperatures of 5, 20, 35 and 50 °C. In addition, the interaction of temperature with a pre-cracked state was also analyzed. To do this, several specimens were pre-cracked to 0.5 mm after 28 days and conditioned in their respective temperature until testing. The findings suggest that this range of moderate temperatures did not degrade the behavior of FRCs to a great extent since the analysis of variances showed that temperature is not always a significant factor; however, it did have an influence on the pre-cracked specimens at 35 and 50 °C.


Author(s):  
A Miranda ◽  
M Leite ◽  
L Reis ◽  
E Copin ◽  
MF Vaz ◽  
...  

The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.


Author(s):  
Cesim Atas ◽  
Alper Basmaci

AbstractThe damage behavior of the potting materials around a pinhole, being used in the mechanical joints of sandwich composites, is investigated experimentally. The sandwich composite panels used in the tests were manufactured by the vacuum-assisted resin infusion technique. Each of the top and bottom face sheets of the panels consisted of two woven E-glass/epoxy layers. As the core material, PVC foam (AIREX


2012 ◽  
Vol 509 ◽  
pp. 209-214
Author(s):  
Shao Peng Wu ◽  
Pan Pan ◽  
Ming Yu Chen

With the widespread application of asphalt mixture, current demand from transportation managers for construction and maintenance of their pavement network consumes large numbers of aggregates. If agencies excessively favor to some certain kinds of excellent aggregates, the cost of construction could be considerably expensive. The major objective of this study is to determine the feasibility of utilizing dacite in asphalt mixtures. By means of Marshall, freeze-thaw, rutting and three-point bending tests, the performances of dacite and basalt asphalt mixture are compared. The results of the testing illustrate that dacite asphalt mixture is more susceptible to gradation and asphalt content than basalt asphalt mixture. Meanwhile it is showed that the performances of dacite asphalt mixture can be improved greatly with the involvement of additives including active mineral powder and cement. Furthermore, it is validated that dacite can be used as alternative aggregate in asphalt mixture.


2006 ◽  
Vol 445-448 ◽  
pp. 422-426 ◽  
Author(s):  
T. Sato ◽  
K. Katagiri ◽  
T. Hokari ◽  
Y. Hatakeyama ◽  
A. Murakami ◽  
...  

Author(s):  
João PM Pragana ◽  
Tomás RM Contreiras ◽  
Ivo MF Bragança ◽  
Carlos MA Silva ◽  
Luis M Alves ◽  
...  

This article presents new joining-by-forming processes to assemble longitudinally two metal–polymer sandwich composite panels perpendicular to one another. Process design draws from an earlier development of the authors for metal sheets to new concepts based on the combination of sheet-bulk forming with mortise-and-tenon joints. Selected examples obtained from experimentation and finite element modelling give support to the presentation. A new three-stage joining by the forming process is capable of producing mechanically locked joints with larger and stiffer flat-shaped heads than those fabricated by alternative single- or two-stage solutions. Failure in the new three-stage joining by the forming process is found to take place by cracking instead of disassembling after unbending the flat-shaped head of the joint back to its original shape. The required forming forces to produce the new metal–polymer joints are below 15 kN, allowing them to be an effective, easy-to-implement alternative to existing solutions based on adhesive bonding, welding and mechanical fastening.


Sign in / Sign up

Export Citation Format

Share Document