scholarly journals Evaluation of the influence of design in the mechanical properties of honeycomb cores used in composite panels

Author(s):  
A Miranda ◽  
M Leite ◽  
L Reis ◽  
E Copin ◽  
MF Vaz ◽  
...  

The aerospace, automotive, and marine industries are heavily reliant on sandwich panels with cellular material cores. Although honeycombs with hexagonal cells are the most commonly used geometries as cores, recently there have been new alternatives in the design of lightweight structures. The present work aims to evaluate the mechanical properties of metallic and polymeric honeycomb structures, with configurations recently proposed and different in-plane orientations, produced by additive and subtractive manufacturing processes. Structures with configurations such as regular hexagonal honeycomb (Hr), lotus (Lt), and hexagonal honeycomb with Plateau borders (Pt), with 0°, 45°, and 90° orientations were analyzed. To evaluate its properties, three-point bending tests were performed, both experimentally and by numerical modeling, by means of the finite element method. Honeycombs of two aluminum alloys and polylactic acid were fabricated. The structures produced in aluminum were obtained either by selective laser melting technology or by machining, while polylactic acid structures were obtained by material extrusion using fused filament fabrication. From the stress distribution analysis and the load–displacement curves, it was possible to evaluate the strength, stiffness, and absorbed energy of the structures. Failure modes were also analyzed for polylactic acid honeycombs. In general, a strong correlation was observed between numerical and experimental results. The results show that the stiffness and absorbed energy increase in the order, Hr, Pt, Lt, and with the orientation through the sequence, 45°, 90°, 0°. Thus, Lt structures with 0° orientation seem to be good alternatives to the traditional honeycombs used in sandwich composite panels for those industrial applications where low weight, high stiffness, and large energy-absorbing capacity are required.

2021 ◽  
Vol 15 (4) ◽  
pp. 491-497
Author(s):  
Tomislav Breški ◽  
Lukas Hentschel ◽  
Damir Godec ◽  
Ivica Đuretek

Fused filament fabrication (FFF) is currently one of the most popular additive manufacturing processes due to its simplicity and low running and material costs. Support structures, which are necessary for overhanging surfaces during production, in most cases need to be manually removed and as such, they become waste material. In this paper, experimental approach is utilised in order to assess suitability of recycling support structures into recycled filament for FFF process. Mechanical properties of standardized specimens made from recycled polylactic acid (PLA) filament as well as influence of layer height and infill density on those properties were investigated. Optimal printing parameters for recycled PLA filaments are determined with Design of Experiment methods (DOE).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kaiyang Zhu ◽  
Zichen Deng ◽  
Shi Dai ◽  
Yajun Yu

Purpose This study aims to focus on the effect of interlayer bonding and thermal decomposition on the mechanical properties of fused filament fabrication-printed polylactic acid specimens at high extrusion temperatures. Design/methodology/approach A printing process, that is simultaneous manufacturing of contour and specimen, is used to improve the printing accuracy at high extrusion temperatures. The effects of the extrusion temperature on the mechanical properties of the interlayer and intra-layer are evaluated via tensile experiments. In addition, the microstructure evolution affected by the extrusion temperature is observed using scanning electron microscopy. Findings The results show that the extrusion temperature can effectively improve the interlayer bonding property; however, the mechanical properties of the specimen for extrusion temperatures higher than 270°C may worsen owing to the thermal decomposition of the polylactic acid (PLA) material. The optimum extrusion temperature of PLA material in the three-dimensional (3D) printing process is recommended to be 250–270°C. Originality/value A temperature-compensated constitutive model for 3D printed PLA material under different extrusion temperatures is proposed. The present work facilitates the prediction of the mechanical properties of specimens at an extrusion temperature for different printing temperatures and different layers.


2019 ◽  
Vol 54 (15) ◽  
pp. 1947-1960 ◽  
Author(s):  
Lucas Ciccarelli ◽  
Frederik Cloppenburg ◽  
Sangeetha Ramaswamy ◽  
Stepan V Lomov ◽  
Aart Van Vuure ◽  
...  

Coir fibres, a byproduct of the coconut industry, have high performance qualities but are difficult to process by conventional textile methods. The purpose of the research is to combine the processibility of hemp and flax with the high-performance properties of coir to create a composite product worthy of industrial applications. The evaluation of coir fibre-reinforced composites focuses on the processibility of the coir fibre into a nonwoven, how well it interfaces with polylactic acid and an analysis of how the mechanical properties of the final product change when mixing coir with hemp and flax. The results show that the hybrid samples outperformed most of the researched values for coir composites, despite the reduced properties of control samples as in comparable research. Adding just 10% of either flax or hemp dramatically increased the mechanical properties compared to the pure coir–polylactic acid composite.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3859 ◽  
Author(s):  
J. Antonio Travieso-Rodriguez ◽  
Ramon Jerez-Mesa ◽  
Jordi Llumà ◽  
Oriol Traver-Ramos ◽  
Giovanni Gomez-Gras ◽  
...  

This paper aims to analyse the mechanical properties response of polylactic acid (PLA) parts manufactured through fused filament fabrication. The influence of six manufacturing factors (layer height, filament width, fill density, layer orientation, printing velocity, and infill pattern) on the flexural resistance of PLA specimens is studied through an L27 Taguchi experimental array. Different geometries were tested on a four-point bending machine and on a rotating bending machine. From the first experimental phase, an optimal set of parameters deriving in the highest flexural resistance was determined. The results show that layer orientation is the most influential parameter, followed by layer height, filament width, and printing velocity, whereas the fill density and infill pattern show no significant influence. Finally, the fatigue fracture behaviour is evaluated and compared with that of previous studies’ results, in order to present a comprehensive study of the mechanical properties of the material under different kind of solicitations.


Author(s):  
J. Antonio Travieso-Rodriguez ◽  
Ramon Jerez-Mesa ◽  
Jordi Llumà ◽  
Oriol Traver-Ramos ◽  
Giovanni Gomez-Gras ◽  
...  

This paper aims to analyse the mechanical properties response of polylactic acid (PLA) parts manufactured through fused filament fabrication. The influence of six manufacturing factors (layer height, filament width, fill density, layer orientation, printing velocity, and infill pattern) on the flexural resistance of PLA specimens is studied through an L27 Taguchi experimental array. Different geometries have been tested on a four-point bending machine and on a rotating bending machine. From the first experimental phase, an optimal set of parameters deriving in the highest flexural resistance have been determined. Results show that layer orientation is the most influential parameter, followed by layer height, filament width, and printing velocity, whereas the fill density and infill pattern show no significant influence. Finally, the fatigue fracture behaviour is evaluated and compared with previous studies results, to present a comprehensive study of the mechanical properties of the material under different kind of solicitations.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1487 ◽  
Author(s):  
Yuhan Liao ◽  
Chang Liu ◽  
Bartolomeo Coppola ◽  
Giuseppina Barra ◽  
Luciano Di Maio ◽  
...  

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.


2018 ◽  
Vol 53 (1) ◽  
pp. 107-123 ◽  
Author(s):  
Seyed Ahmad Taghizadeh ◽  
Gholamhossein Liaghat ◽  
Abbas Niknejad ◽  
Ehsan Pedram

The main aim of the present research is to investigate the quasi-static penetration process of cylindrical indenters with different nose shapes into multilayered composite panels made of Dyneema and Glass woven fibers, and aluminum face sheets. For better understanding of the perforation mechanism of the composite panels, effects of indenter geometry, stacking sequences, and boundary conditions are studied and their effects on energy absorption, specific absorbed energy, maximum deformation, peak load, and failure modes are evaluated and discussed. Samples with different layering configurations loaded under quasi-static punch and indentation with loading rate of 5 mm/min using universal testing machine and cylindrical rigid indenters with different nose shapes geometries consist of blunt, hemispherical, conical, and ogival. Regarding the boundary condition effects, two different rigid fixtures are designed and manufactured with the same external square perimeter (250 × 250 mm) and two different internal perimeters of circular and square shapes respectively, with diameter of 15 mm and edge side of 100 mm. Results show that the hybrid composite panels composed of Dyneema sheets, exhibits significantly better load carrying capacity and specific absorbed energy under both loading conditions. Indenter nose shape significantly affects elastic load, peak load, and energy absorption and maximum deformation. Furthermore, from visual observations based on digital microscopic images, fiber breakage, fiber pull out, intralaminar delamination, and debonding between the composite layers within the damage zone were inspected and recognized as the main damage mechanisms of panels. Output data obtained from all the experimental investigation were reported, discussed, and commented upon.


Author(s):  
Luca Boccarusso ◽  
Fulvio Pinto ◽  
Stefano Cuomo ◽  
Dario De Fazio ◽  
Kostas Myronidis ◽  
...  

AbstractAdvanced sandwich composite structures that incorporate foams or honeycombs as core materials, have been extensively investigated and used in various applications. One of the major limitations of the conventional materials used is their weak impact resistance and their end-of-life recyclability and overall sustainability. This paper is focused on the study of the production and mechanical characterization of hybrid sandwich panels using hemp bi-grid cores that were manufactured with an ad hoc continuous manufacturing process. Bi-grid structures were stratified in multiple layers, resulting in cores with different thicknesses and planar density. Sandwich panels made with carbon fibers skins were then subjected to Low Velocity Impact, compression and indentation and the damaged panels were investigated via CT-Scan. Results show that the high tailorability of the failure modes and the very good energy absorption properties of the hybrid material open new exciting perspectives for the development of new sandwich structures that can extend the use of natural fibers into several industrial applications.


2021 ◽  
pp. 002199832110205
Author(s):  
Cristofaro S Timpano ◽  
Garrett W Melenka

Fused filament fabrication (FFF) has rapidly begun to see implementation in industrial fields as a method of rapid manufacturing. Traditional FFF parts are made from a single thermoplastic polymer. The polymer is heated to its melting point and deposited on a work bed where a model is gradually built from the base up. While traditional FFF parts have low mechanical properties, a reinforcing phase allows for improved mechanical properties. The addition of a reinforcing material to the base polymer and complex internal microstructure of the 3 D printed party leads to anisotropic mechanical properties. Thus, these materials’ mechanical properties become challenging to characterize using traditional measurement techniques due to the previously mentioned factors. Therefore, it is essential to develop a method in which mechanical properties can be measured and analyzed. This study aims to characterize the mechanical behaviour under a uniaxial tensile load of an FFF produced polylactic acid (PLA)-copper particulate composite. The internal response of the FFF sample was imaged using micro-computed tomography at predetermined loads. The μ-CT images were input into an open-source digital volume correlation (DVC) software to measure the internal displacements and strain tensor fields. The study results show the development of different strain fields and interior features of the FFF parts.


Sign in / Sign up

Export Citation Format

Share Document