Geometric Design of Symmetric 3-RRS Constrained Parallel Platforms

Author(s):  
Eric Wolbrecht ◽  
Hai-Jun Su ◽  
Alba Perez ◽  
J. Michael McCarthy

The paper presents the kinematic synthesis of a symmetric parallel platform supported by three RRS serial chains. The dimensional synthesis of this three degree-of-freedom system is obtained using design equations for each of three RRS chains obtained by requiring that they reach a specified set of task positions. The result is 10 polynomial equations in 10 unknowns, which is solved using polynomial homotopy continuation. An example is provided in which the direction of the first revolute joint (2 parameters) and the z component of the base and platform are specified as well as the two task positions. The system of polynomials has a total degree of 4096 which means that in theory it can have as many solutions. Our example has 70 real solutions that define 70 different symmetric platforms that can reach the specified positions.

Author(s):  
Nina Robson ◽  
Anurag Tolety

This paper builds up on recent results on planar kinematic synthesis with contact direction and curvature constraints on the workpiece. We consider the synthesis of spherical serial chains to guide a rigid body, such that it does not violate normal direction and curvature constraints imposed by contact with objects in the environment. We show how to derive these constraints from the geometry of the task and transform them into conditions on velocity and acceleration of points in the moving body to obtain synthesis equations which can be solved by algebraic elimination. Trajectory interpolation formulas yield the movement of the chain with the desired contact properties in each of the task positions. An example shows the application of the developed theory to the failure recovery of a robot manipulator, using kinematic synthesis techniques.


Author(s):  
Alba Perez ◽  
J. M. McCarthy

This paper presents the kinematic synthesis of a CRR serial chain. This is a four-degree-of-freedom chain constructed from a cylindric joint and two revolute joints in series. The design equations for this chain are obtained from the dual quaternion kinematics equations evaluated at a specified set of task positions. In this case, we find that the chain is completely defined by seven task positions. Furthermore, our solution of these equations has yielded 52 candidate designs, so far; there may be more. This synthesis methodology shows promise for the design of constrained serial chains.


Author(s):  
Hai-Jun Su ◽  
J. Michael McCarthy

This paper examine the geometric design of the five degree-of-freedom RPS serial chain. This constrained robot can be designed to reach an arbitrary set of ten spatial positions. It is often convenient to consider tasks with fewer positions, and here we study the cases of seven through ten position synthesis. A generalized eigenvalue elimination technique yields analytical solutions for cases seven and eight. While cases nine and ten are solved numerically using homotopy continuation. An numerical example is provided for an eight position task.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Wei An ◽  
Jun Wei ◽  
Xiaoyu Lu ◽  
Jian S. Dai ◽  
Yanzeng Li

AbstractCurrent research on robotic dexterous hands mainly focuses on designing new finger and palm structures, as well as developing smarter control algorithms. Although the dimensional synthesis of dexterous hands with traditional rigid palms has been carried out, research on the dimensional synthesis of dexterous hands with metamorphic palms remains insufficient. This study investigated the dimensional synthesis of a palm of a novel metamorphic multi-fingered hand, and explored the geometric design for maximizing the precision manipulation workspace. Different indexes were used to value the workspace of the metamorphic hand, and the best proportions between the five links of the palm to obtain the optimal workspace of the metamorphic hand were explored. Based on the fixed total length of the palm member, four nondimensional design parameters that determine the size of the palm were introduced; through the discretization method, the influence of the four design parameters on the workspace of the metamorphic hand with full-actuated fingers and under-actuated fingers was analyzed. Based on the analysis of the metamorphic multi-fingered hand, the symmetrical structure of the palm was designed, resulting in the largest workspace of the multi-fingered hand, and proved that the metamorphic palm has a massive upgrade for the workspace of underactuated fingers. This research contributed to the dimensional synthesis of metamorphic dexterous hands, with practical significance for the design and optimization of novel metamorphic hands.


Author(s):  
Venkat Krovi ◽  
G. K. Ananthasuresh ◽  
Vijay Kumar

Abstract We revisit the dimensional synthesis of a spatial two-link, two revolute-jointed serial chain for path following applications, focussing on the systematic development of the design equations and their analytic solution for the three precision point synthesis problem. The kinematic design equations are obtained from the equations of loop-closure for end-effector position in rotation-matrix/vector form at the three precision points. These design equations form a rank-deficient linear system in the link-vector components. The nullspace of the rank deficient linear system is then deduced analytically and interpreted geometrically. Tools from linear algebra are applied to systematically create the auxiliary conditions required for synthesis and to verify consistency. An analytic procedure for obtaining the link-vector components is then developed after a suitable selection of free choices. Optimization over the free choices is possible to permit the matching of additional criteria and explored further. Examples of the design of optimal two-link coupled spatial R-R dyads are presented where the end-effector interpolates three positions exactly and closely approximates an entire desired path.


2000 ◽  
Vol 24 (3-4) ◽  
pp. 453-476 ◽  
Author(s):  
Jin Yao ◽  
Jorge Angeles

We propose a computational-kinematics approach based on elimination procedures to synthesize a steering four-bar linkage. In this regard, we aim at minimizing the root-mean square error of the synthesized linkage in meeting the steering condition over a number of linkage configurations within the linkage range of motion. A minimization problem is thus formulated, whose normality conditions lead to two polynomial equations in two unknown design variables. Upon eliminating one of these two variables, a monovariate polynomial equation is obtained, whose roots yield all locally-optimum linkages. From these roots, the global optimum, as well as unfeasible local optima, are readily identified. The global optimum, however, turns out to be impractical because of the large differences in its link lengths, which we refer to as dimensional unbalance. To cope with this drawback, we use a kinematically-equivalent focal mechanism, i.e., a six-bar linkage with an input-output function identical to that of the four-bar linkage. Given that the synthesized linkage requires a rotational input, as opposed to most existing steering linkages, which require a translational input, we propose a spherical four-bar linkage to drive the steering linkage. The spherical linkage is synthesized so as to yield a speed reduction as close as possible to 2:1 and to have a maximum transmission quality.


Author(s):  
Liu Anxin ◽  
Yang Tingli

Abstract Real continuation method for finding real solutions to non-linear equations is proposed. Synthesis of planar four-bar linkage for path generation with nine precision points is studied using this method. The proposed method has high efficiency and can best be used for solving synthesis problems.


2003 ◽  
Vol 125 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Han Sung Kim ◽  
Lung-Wen Tsai

This paper presents the design of spatial 3-RPS parallel manipulators from dimensional synthesis point of view. Since a spatial 3-RPS manipulator has only 3 degrees of freedom, its end effector cannot be positioned arbitrarily in space. It is shown that at most six positions and orientations of the moving platform can be prescribed at will and, given six prescribed positions, there are at most ten RPS chains that can be used to construct up to 120 manipulators. Further, solution methods for fewer than six prescribed positions are also described.


1986 ◽  
Vol 79 (9) ◽  
pp. 732-737
Author(s):  
Jillian C. F. Sullivan

Although solving polynomial equations is important in mathematics, most high school students can solve only linear and quadratic equations. This is because the methods for solving cubic and quartic equations are difficult, and no general methods of solution are available for equations of degree higher than four. However, numerical methods can be used to approximate the real solutions of polynomial equations of any degree. Because they involve a great deal of computation they have not traditionally been taught in the schools. Now that most students have access to calculators and computers, this computational difficulty is easily overcome.


Sign in / Sign up

Export Citation Format

Share Document