scholarly journals Geometric Design-based Dimensional Synthesis of a Novel Metamorphic Multi-fingered Hand with Maximal Workspace

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Wei An ◽  
Jun Wei ◽  
Xiaoyu Lu ◽  
Jian S. Dai ◽  
Yanzeng Li

AbstractCurrent research on robotic dexterous hands mainly focuses on designing new finger and palm structures, as well as developing smarter control algorithms. Although the dimensional synthesis of dexterous hands with traditional rigid palms has been carried out, research on the dimensional synthesis of dexterous hands with metamorphic palms remains insufficient. This study investigated the dimensional synthesis of a palm of a novel metamorphic multi-fingered hand, and explored the geometric design for maximizing the precision manipulation workspace. Different indexes were used to value the workspace of the metamorphic hand, and the best proportions between the five links of the palm to obtain the optimal workspace of the metamorphic hand were explored. Based on the fixed total length of the palm member, four nondimensional design parameters that determine the size of the palm were introduced; through the discretization method, the influence of the four design parameters on the workspace of the metamorphic hand with full-actuated fingers and under-actuated fingers was analyzed. Based on the analysis of the metamorphic multi-fingered hand, the symmetrical structure of the palm was designed, resulting in the largest workspace of the multi-fingered hand, and proved that the metamorphic palm has a massive upgrade for the workspace of underactuated fingers. This research contributed to the dimensional synthesis of metamorphic dexterous hands, with practical significance for the design and optimization of novel metamorphic hands.

2021 ◽  
Vol 30 (1) ◽  
pp. 19-27
Author(s):  
Kumar Gomathi ◽  
Arunachalam Balaji ◽  
Thangaraj Mrunalini

Abstract This paper deals with the design and optimization of a differential capacitive micro accelerometer for better displacement since other types of micro accelerometer lags in sensitivity and linearity. To overcome this problem, a capacitive area-changed technique is adopted to improve the sensitivity even in a wide acceleration range (0–100 g). The linearity is improved by designing a U-folded suspension. The movable mass of the accelerometer is designed with many fingers connected in parallel and suspended over the stationary electrodes. This arrangement gives the differential comb-type capacitive accelerometer. The area changed capacitive accelerometer is designed using Intellisuite 8.6 Software. Design parameters such as spring width and radius, length, and width of the proof mass are optimized using Minitab 17 software. Mechanical sensitivity of 0.3506 μm/g and Electrical sensitivity of 4.706 μF/g are achieved. The highest displacement of 7.899 μm is obtained with a cross-axis sensitivity of 0.47%.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Author(s):  
Eric Wolbrecht ◽  
Hai-Jun Su ◽  
Alba Perez ◽  
J. Michael McCarthy

The paper presents the kinematic synthesis of a symmetric parallel platform supported by three RRS serial chains. The dimensional synthesis of this three degree-of-freedom system is obtained using design equations for each of three RRS chains obtained by requiring that they reach a specified set of task positions. The result is 10 polynomial equations in 10 unknowns, which is solved using polynomial homotopy continuation. An example is provided in which the direction of the first revolute joint (2 parameters) and the z component of the base and platform are specified as well as the two task positions. The system of polynomials has a total degree of 4096 which means that in theory it can have as many solutions. Our example has 70 real solutions that define 70 different symmetric platforms that can reach the specified positions.


2021 ◽  
Vol 36 (6) ◽  
pp. 726-733
Author(s):  
Yongjie Zhang ◽  
Xiaofeng Deng

In this study, 2D finite element (FE) solving process with the conformal perfectly matched layer (PML) is elucidated to perform the electromagnetic scattering computation. With the 2D monostatic RCS as the optimization objective, a sensitivity analysis of the basic design parameters of conformal PML (e.g., layer thickness, loss factor, extension order and layer number) is conducted to identify the major parameters of conformal PML that exerts more significant influence on 2D RCS. Lastly, the major design parameters of conformal PML are optimized by the simulated annealing algorithm (SA). As revealed from the numerical examples, the parameter design and optimization method of conformal PML based on SA is capable of enhancing the absorption effect exerted by the conformal PML and decreasing the error of the RCS calculation. It is anticipated that the parameter design method of conformal PML based on RCS optimization can be applied to the cognate absorbing boundary and 3D electromagnetic computation.


2010 ◽  
Vol 34 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Jung-Hee Lee ◽  
Young-Shin Lee ◽  
Yong-Ho Lee ◽  
Hyun-Kyoon Lim ◽  
Sung-Jin Lee

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 749 ◽  
Author(s):  
Jang ◽  
Yoon ◽  
Cho ◽  
Jung ◽  
Lee ◽  
...  

In this paper, a germanium-based gate-metal-core vertical nanowire tunnel field effect transistor (VNWTFET) has been designed and optimized using the technology computer-aided design (TCAD) simulation. In the proposed structure, by locating the gate-metal as a core of the nanowire, a more extensive band-to-band tunneling (BTBT) area can be achieved compared with the conventional core–shell VNWTFETs. The channel thickness (Tch), the gate-metal height (Hg), and the channel height (Hch) were considered as the design parameters for the optimization of device performances. The designed gate-metal-core VNWTFET exhibits outstanding performance, with an on-state current (Ion) of 80.9 μA/μm, off-state current (Ioff) of 1.09 × 10−12 A/μm, threshold voltage (Vt) of 0.21 V, and subthreshold swing (SS) of 42.8 mV/dec. Therefore, the proposed device was demonstrated to be a promising logic device for low-power applications.


Sign in / Sign up

Export Citation Format

Share Document