Methodologies for Prognostication and Health Monitoring of Leaded and Lead Free Electronics and MEMS Packages in Harsh Environments

Author(s):  
Pradeep Lall ◽  
Nokibul Islam ◽  
Prakriti Choudhary ◽  
Jeff Suhling

In this paper, a methodology for prognostication-of-electronics has been developed for accurate assessment of residual life in a deployed electronic components, and determination of damage-state in absence of macro-indicators of failure. Proxies for leading indicators-of-failure have been identified and correlated with damage progression under thermo-mechanical loads. Examples of proxies include — micro-structural evolution characterized by average phase size and intermetallic growth rate in solder interconnects. Validity of damage proxies has been investigated for both 63Sn37Pb leaded and SnAgCu leadfree electronics. Structures examined include — plastic ball grid array format electronic and MEMS Packages and discrete devices assembled with FR4-06 laminates. Focus of the research presented in this paper is on interrogation of the aged material’s damage state and enhancing the understanding of damage progression. The research is aimed at development of damage relationships for determination of residual life of aged electronics and assessment of design margins instead of life prediction of new components. The prognostic indicators presented in this paper, can be used for health monitoring of electronic assemblies.

Author(s):  
Pradeep Lall ◽  
Nokibul Islam ◽  
Prakriti Choudhary ◽  
Jeff Suhling

In this paper, a methodology for prognostication-of-electronics has been developed for accurate assessment of residual life in a deployed electronic components, and determination of damage-state in absence of macro-indicators of failure. Proxies for leading indicators-of-failure have been identified and correlated with damage progression under thermomechanical loads. Examples of proxies include — microstructural evolution characterized by average phase size and intermetallic growth rate in solder interconnects. Validity of damage proxies has been investigated for both 63Sn37Pb leaded and SnAgCu leadfree electronics. Structures examined include — plastic ball grid array format electronic and MEMS Packages and discrete devices assembled with FR4-06 laminates. Focus of the research presented in this paper is on interrogation of the aged material’s damage state and enhancing the understanding of damage progression. The research is aimed at development of damage relationships for determination of residual life of aged electronics and assessment of design margins instead of life prediction of new components. The prognostic indicators presented in this paper, can be used for health monitoring of electronic assemblies.


Author(s):  
Pradeep Lall ◽  
Nokibul Islam ◽  
Kaysar Rahim ◽  
Jeff Suhling

The current state-of-art in managing system reliability is geared towards the development of life-prediction models for unaged pristine materials under known loading conditions based on relationships such as the Paris’s Power Law [Paris, et. al 1960, 1961], Coffin-Manson Relationship [Coffin 1954; Tavernelli, et. al. 1959; Smith, et. al. 1964; Manson, et. al. 1964] and the S-N Diagram. There is need for methods and processes which will allow interrogation of complex systems and sub-systems to determine the remaining useful life prior to repair or replacement. This capability of determination of material or system state is called “prognosis”. In this paper, a methodology for prognosis-of-electronics has been demonstrated with data of leading indicators of failure for accurate assessment of product damage significantly prior to appearance of any macro-indicators of damage. Proxies for leading indicators of failure have been developed including – micro-structural evolution characterized by average phase size and interfacial stresses at interface of silicon structures. Structures examined include – electronics package, MEMS Packages and interconnections on a metal backed printed circuit board typical of electronics deployed in harsh environments. Since, an aged material knows its state the research presented in this paper focuses on enhancing the understanding of material damage to facilitate proper interrogation of material state. Mathematical relationship has been developed between phase growth rate and time-to-1-percent failure to enable the computation of damage manifested and a forward estimate of residual life.


Author(s):  
Pradeep Lall ◽  
Madhura Hande ◽  
Chandan Bhat ◽  
Jeff Suhling

Methodologies for prognostication and health monitoring can significantly impact electronic reliability for applications in which even minimal risk of failure may be unbearable. Presently, health monitoring approaches such as the built-in self-test (BIST) are based on reactive failure diagnostics and unable to determine residual-life or estimate residual-reliability [Allen 2003, Drees 2004, Gao 2002, Rosenthal 1990]. Prognostics health-monitoring (PHM) approach presented in this paper is different from state-of-art diagnostics and resides in the pre-failure-space of the electronic-system, in which no macro-indicators such as cracks or delamination exist. Applications for the presented PHM framework include, consumer applications such as automotive safety systems including front and rear impact protection system, chassis-control systems, x-by-wire systems; and defense applications such as avionics systems, naval electronic warfare systems. The presented PHM methodologies enable the estimation of prior damage in deployed electronics by interrogation of the system state. The presented methodologies will trigger repair or replacement, significantly prior to failure. The approach involves the use of condition monitoring devices which can be interrogated for damage proxies at finite time-intervals. The system’s residual life is computed based on residual-life computation algorithms. Previously, Lall, et. al. [2004, 2005, 2006] have developed several leading indicators of failure. In this paper a mathematical approach has been presented to calculate the prior damage in electronics subjected to cyclic and isothermal thermo-mechanical loads. Electronic components operating in a harsh environment may be subjected to both temperature variations in addition to thermal aging during use-life. Data has been collected for leading indicators of failure for 95.5Sn4Ag0.5Cu first-level interconnects under both single and sequential application of cyclic and isothermal thermo-mechanical loads. Methodology for the determination of prior damage history has been presented using non-linear least-squares method based interrogation techniques. The methodology presented used the Levenberg-Marquardt Algorithm. Test vehicle includes various area-array packaging architectures soldered on Immersion Ag finish, subjected to thermal cycling in the range of −40°C to 125°C and isothermal aging at 125°C.


2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.


Author(s):  
Dmitry Semenov ◽  
Anna Sidorova ◽  
Pavel Romanov ◽  
Aleksey Kuvshinov

Abstract The relevance of the study is conditioned by the need to determine the state and residual life duration of high-voltage cable lines to identify faulty and maintainable cables. The aim of the article is to determine a reliable scientifically grounded criterion for assessment of insulation characteristics of the cables in use and to perform a comparative analysis of the results obtained by the traditional method of diagnosing insulation with the results of a new method of assessment by the return voltage. In this regard, the article deals with the issues related to the testing of cables having oil-impregnated paper insulation, as well as with the issue of switching from planned replacement of cables to assessment of their actual state and period of residual life. The authors propose to use the method of examining the cables by the return voltage using the device for testing electrical insulation “UDEI-1” developed at the department of Electrification and Automation of the Nizhny Novgorod State University of Engineering and Economics. The article presents the results of measuring the return voltage of three cables that operated under different conditions. The cables had different technical state. The analysis of the estimation of the residual life of cables by the return voltage was carried out using such criteria as the PIRV polarization index, the LIRV electrical conductivity index, and the P-factor. The P-factor is the physical criterion demonstrating the aging of paper-oil insulation by the shape of the return voltage curve. It represents such characteristics of insulation aging as moistening. To compare the results of testing the cables by the return voltage with the conventional methods of diagnostics and to determine the actual technical condition of power cables, the authors applied the method of spatiotemporal reflectometry and the method of measuring insulation resistance with the determination of such indicators of state as insulation resistance normalized per one kilometer, absorption coefficient, and polarization index. The results of this article confirm that the return voltage gives a qualitative assessment of the state and degree of aging of cables with impregnated paper insulation. The authors proposed a new system for evaluation of cable condition by weighting coefficients. In this approach, the determination of residual life of cables with impregnated paper insulation is based on the values of the return voltage. Application of the new system gives opportunity to improve reliability of the power lines. Recommendations for the further operation of the studied cables are given. The materials of the article are of practical value for carrying out complex assessment of the technical condition of power cables by the return voltage and can be useful for drawing up a schedule for replacement or repair of cable lines depending on their actual state.


2014 ◽  
Vol 792 ◽  
pp. 139-143 ◽  
Author(s):  
Polykseni Vourna ◽  
Aphrodite Ktena ◽  
A. Mpalliou ◽  
Athanasios G. Mamalis ◽  
Evangelos Hristoforou

In the present work the determination of intrinsic properties in ferromagnetic materials by using magnetic non-destructive techniques is discussed. Barkhausen noise and bulk permeability measurements were used in various steels. The monotonic dependence of the magnetic response on microstructural features was verified.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 545 ◽  
Author(s):  
Xinlin Qing ◽  
Wenzhuo Li ◽  
Yishou Wang ◽  
Hu Sun

Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.


Sign in / Sign up

Export Citation Format

Share Document