Design Optimization of Snap-Fit Integral Parts by FEA and Statistical Analysis

Author(s):  
L. Goteti ◽  
J. Choi ◽  
J. Park

Snap-fit integral attachments are used widely for joining plastic parts. The proliferated use of integral attachment in the form of snap-fit features in designs is due to the ability to mould such parts of great complexity at little cost. The exceptional diversity of part geometry and integral snap-fit features has made it seem that design possibilities may be unlimited. Thus, attempts at optimization might be intractable. A design of experiments (DOE) approach coupled with three-dimensional, geometrical non-linear finite element analysis (FEA) was used to calculate the insertion and retention responses on such parts for various geometrical parameters like length, width and angles. A statistical technique was employed to formulate empirical relationships among the geometrical dimensions, to investigate the effect of these parameters on the design as well as to obtain optimal insertion and retention forces or strains. Design equations obtained from this methodology were verified within the DOE domain and it was observed that the predicted responses were ranged within 30% of the FEA results. During this investigation, it was observed that geometrical features of a block, which exert force on the snap-fit features, have a considerable effect on the results. Therefore, the effects of the block parameters on the various responses were also studied. An attempt was also made to understand the effect of the block parameters such as corner radius and thickness on the design formula, which depicts the geometrical parameters of the snap-fit part as a function of insertion and retention forces. It is expected that the results help to find optimal design parameters in order to enhance the performance of such snap-fit features.

2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


2020 ◽  
Vol 8 (1) ◽  
pp. 29-46
Author(s):  
S. Rakshe ◽  
S. V. Nimje ◽  
S. K. Panigrahi

A review on optimization of adhesively bonded spar-wingskin joint (SWJ) of laminated fiber reinforced polymer (FRP) composites subjected to pull-off load is presented in this article using three-dimensional finite element analysis. Von Mises stress components have been computed across the width of joint at different interfaces viz. load coupler-spar, and load coupler-wingskin interfaces. Further, the weight of SWJ structure is considered as the objective function which needs to be minimized for optimization. In the first step, the material and lamination scheme of the FRP composite materials used for SWJ are optimized, and, in the second step, the geometrical parameters have been optimized on the basis of minimum von Mises stress and weight. Further, the effects of the material, lamination scheme, and geometrical parameters on the von Mises stress and weight have been validated using the Analysis of Variance (ANOVA) approach as prescribed by the Taguchi method. The results show that the material and spar thickness are the most significant factors influencing von Mises stress. The weight analysis reveals that there is a significant effect of change in material and wingskin thickness on SWJ performance. Suitable design recommendations have been made for SWJ in terms of material, lamination scheme and geometrical parameters.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Siddappa I. Bekinal ◽  
Soumendu Jana

This work deals with generalized three-dimensional (3D) mathematical model to estimate the force and stiffness in axially, radially, and perpendicularly polarized passive magnetic bearings with “n” number of permanent magnet (PM) ring pairs. Coulombian model and vector approach are used to derive generalized equations for force and stiffness. Bearing characteristics (in three possible standard configurations) of permanent magnet bearings (PMBs) are evaluated using matlab codes. Further, results of the model are validated with finite element analysis (FEA) results for five ring pairs. Developed matlab codes are further utilized to determine only the axial force and axial stiffness in three stacked PMB configurations by varying the number of rings. Finally, the correlation between the bearing characteristics (PMB with only one and multiple ring pairs) is proposed and discussed in detail. The proposed mathematical model might be useful for the selection of suitable configuration of PMB as well as its optimization for geometrical parameters for high-speed applications.


Author(s):  
Andrew R. Thoreson ◽  
James J. Stone ◽  
Kurtis L. Langner ◽  
Jay Norton ◽  
Bor Z. Jang

Numerous techniques for fabricating tissue engineering scaffolds have been proposed by researchers covering many disciplines. While literature regarding properties and efficacy of scaffolds having a single set of design parameters is abundant, characterization studies of scaffold structures encompassing a wide range of design parameters are limited. A Precision Extrusion Deposition (PED) system was developed for fabricating poly-ε-caprolactone (PCL) tissue scaffolds having interconnected pores suitable for cartilage regeneration. Scaffold structures fabricated with three-dimensional printing methods are periodic and are readily modeled using Computer Aided Design (CAD) software. Design parameters of periodic scaffold architectures were identified and incorporated into CAD models with design parameters over the practical processing range represented. Solid models were imported into a finite element model simulating compression loading. Model deformation results were used to identify apparent modulus of elasticity of the structure. PCL scaffold specimens with design parameters within the modeled range were fabricated and subjected to compression testing to physically characterize scaffold modulus. Results of physical testing and finite element models were compared to determine effectiveness of the method.


Author(s):  
Ling Wang ◽  
Jianfeng Kang ◽  
Lei Shi ◽  
Jun Fu ◽  
Dichen Li ◽  
...  

Most vertebral body implants that are currently designed and produced in batches have difficulty meeting the patient-specific demands. Moreover, several complications, including a low fusion rate, subsidence occurrence, and rod displacement, are associated with these implants. This study aims to investigate the effects of patient-specific geometric and clinical parameters on the biomechanics of a vertebral body replacement. A three-dimensional patient-specific vertebral body replacement model was established as the basic model for parametric studies, including the anatomic design of the endplates, tilting angle, thickness, and dislocation of the vertebral body implant. A finite element analysis was applied to determine the stress distribution of the vertebral body implant when under various loading conditions. The model with an anatomical interfacing design generates 75% less stress concentration compared to a flat design; the peak stress of the model with a tilted angle closely matching the replaced vertebra segment is decreased by 30%; and the thickness close to the cortical bone can offer better bone growth capability and long-term stability. Patient-specific geometrical parameters were found to significantly affect the biomechanics of a vertebral body replacement, and therefore, a design customized especially for the endplates is necessary for better stability and long-term longevity of the prostheses. Regardless of such progress, how to balance the stability of a vertebral body implant and the safety of the peripheral nervous system remains a clinical challenge.


2013 ◽  
Vol 7 (2) ◽  
Author(s):  
Joshua C. Arnone ◽  
A. Sherif El-Gizawy ◽  
Brett D. Crist ◽  
Gregory J. Della Rocca ◽  
Carol V. Ward

The present paper presents an integrated computer-aided engineering (CAE) approach combining digital imaging, solid modeling, robust design methodology, and finite element analysis in order to conduct a parametric investigation of the design of locked plating systems. The present study allows for understanding the contributions of different design parameters on the biomechanics and reliability of these systems. Furthermore, the present approach will lead to exploration of optimum design parameters that will result in robust system performance. Three-dimensional surface models of cortical and cancellous femoral bone were derived via digital computed tomography (CT) image processing techniques and a medical imaging analysis program. A nine orthogonal array matrix simulation (L9) was conducted using finite element methods to study the effects of the various design parameters on plate performance. The introduced technique was demonstrated and experimentally verified on a case study using a Smith & Nephew PERI- LOC distal femur locking plate and a Synthes Less Invasive Stabilization System (LISS).


2018 ◽  
Vol 91 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Yunpeng Ma ◽  
Na Guo

PurposeA numerical study on the aerodynamic noise generation of a high efficiency propeller is carried out.Design/methodology/approachThree-dimensional numerical simulation based on Reynolds averaged N-S model is performed to obtain the aerodynamic performance of the propeller. Then, the result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A which was derived from Ffowcs Williams–Hawkings equation and is compared with the measurements.FindingsMoreover, the fan is modified for noise reduction by changing its geometrical parameters such as span, chord length and torsion angle.Originality/valueThe variation trend of aerodynamic and acoustic are compared and discussed for different modification tasks. Some meaningful conclusions are drawn on the noise reduction of propeller.


2013 ◽  
Vol 275-277 ◽  
pp. 2241-2247 ◽  
Author(s):  
Arbtip Dheeravongkit ◽  
Narongsak Tirasuntarakul

Ball swaging is a general method in head stack assembly process to permanently attach Head Gimbal Assemblies (HGA) on the actuator arm. In this process, the swage ball is guided by a pin through the inner base plate’s hole in order to deform the base plate to tightly attach to the actuator arm. However, the loosing problem can still be found quite often in the current swaging process. This research focuses on ball sizes and the number of balls used which currently no theoretical guidance in choosing the both parameters. Besides, the best combination of the both parameters can give the best swaging performance. The three-dimensional finite element model is created and analyzed to estimate the swaging performance according to the variation of both parameters by using the tightening torque and the fixing distance of base plate to determine the quality of the ball swaging process. The results from finite element method are treated as the sampling points which are used to create the interpolation in order to increase the considered cases to cover all happening cases from both parameters. After that, a searching algorithm is implemented to determine the most suitable ball size and the number of ball used for the process. By using the finite element analysis together with the interpolation and a searching algorithm, the optimal design parameters for a complex problem with multiple conditions of consideration can be easily found.


Author(s):  
Duccio Bonaiuti ◽  
Abeetha Pitigala ◽  
Mehrdad Zangeneh ◽  
Yansheng Li

In the present paper, the redesign of a transonic rotor was performed by means of a three-dimensional viscous inverse design method. The inverse approach used in this work is one where the pressure loading, blade thickness distribution and stacking axis are specified and the camber surface is calculated accordingly. The design of transonic and supersonic axial compressors strongly relies on the ability to control the shock strength, location and structure. The use of an inverse design method allows one to act directly on aerodynamic parameters, like the blade loading, and provides an efficient tool to control the shock wave and its interaction with the boundary and secondary flows and with the tip clearance vortex. In the present study, the parametric investigation of the blade loading distribution was carried out. Few design parameters, with immediate physical meaning, were required to control the three-dimensional blade loading, and their impact on the design and off-design performance of the rotor was assessed by means of CFD calculations. Further investigations were then performed in order to study the impact on the rotor performance of the geometrical parameters (meridional channel and thickness distribution), which must be imposed in the design with the inverse method. As a result, it was possible to develop guidelines for the aerodynamic design of transonic rotors that can be exploited for similar design applications.


Sign in / Sign up

Export Citation Format

Share Document