Abrasion Under Humide Condition for Tool Steels H-13 and AISI D-2

Tribology ◽  
2006 ◽  
Author(s):  
I. Hilerio ◽  
M. Vite ◽  
M. A. Barro´n ◽  
H. Jime´nez ◽  
G. D. Alva´rez

In the present work, is developed the tribologic characterization of steels AISI H-13 and D-2, submitted to nitruration ionic process to determine wear resistance in aqueous conditions. Wear test are realized with an abrasion wear tool in an aqueous environment, designed and constructed by SEPI, ESIME, IPN, according to the norm ASTM G105-89. The aim of this investigation is to use a new material at lower prize which has an excellent wear resistance properties for high abrasion in aqueous environments, as occurs in several cases as mining industry equipments.

2018 ◽  
Vol 7 (3.6) ◽  
pp. 101 ◽  
Author(s):  
G Jims John Wessley ◽  
A Gaith Franklin ◽  
S J. Vijay

This paper presents the development and characterization of aluminium alloy 6063 based metal matrix composite with varying combinations of fly ash and Borosilicate reinforcements.  In the present work, the aluminium alloy 6063 (AA) is taken at a constant 84 vol% while the reinforcements Fly Ash (FA) and Borosilicate (B) are varied in the proportions of 2%, 4% 8%, 125 and 14%. Six samples were fabricated by stir casting and the mechanical properties were analyzed using tensile test, hardness test and wear test while the microstructure is analyzed by obtaining SEM and EDX images of the specimen. It is seen that both the reinforcements used in this study, increased the tensile and wear resistance of the alloy. The desirable mechanical and micro structural properties were found to be in the specimen with 84% AA, 14% FA and 2% B. The tensile strength of the aluminum alloy at this desirable combination is found to increase by 11.97%, ductility by 36.75% and the wear resistance by 62%.  This metal matrix composite of AA6063 with fly ash and Borosilicate reinforcements can be used in automobile, aerospace and structural applications where wear resistance and tensile properties are mainly required.


Lubricants ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 21 ◽  
Author(s):  
Ekaterina Kuznetsova ◽  
Iosif Gershman ◽  
Alexander Mironov ◽  
Pavel Podrabinnik ◽  
Pavel Peretyagin

This article describes the elemental composition of secondary structures formed on the steel contact surface during wear test against experimental Al alloys. Wear tests were carried out according to the rotating steel roller-fixed shoe of an antifriction alloy scheme under boundary lubrication conditions. The duration of the test was 40 h, and motor oil M14V2 was used as a lubricant. The microstructure and elemental characterization of the steel surface before and after the tribological test was obtained by scanning electron microscopy equipped with EDX. The simultaneous presence of various constituents of oil, steel, and Al alloys can produce both positive and negative effects on the friction characteristic of the tribosystem. It was shown that presence of Mo, F, S, Si, Ni, and Cr have a favorable effect on the wear resistance of steel and the friction coefficient of the rubbing surfaces due to the formation of secondary structures with optimal composition.


Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 63 ◽  
Author(s):  
Triani ◽  
Mariani ◽  
Gomes ◽  
Oliveira ◽  
Totten ◽  
...  

The production of vanadium and niobium carbides (VC and NbC) layers on AISI 8620, 8640, and 52100 steels may increase hardness and wear resistance of substrates. Thermochemical treatments were performed at 1000 °C for 2 and 4 h. The characterization of the treated samples was carried out by means of Knoop microhardness tests, “calotest” type microadhesive wear test, layer adhesion test according to VDI 3198 standard, and X-ray diffraction. Compact and uniform layers of VC and NbC were obtained in all treatments, with hardness up to 2500 HK and microadhesive wear resistance far superior to that of the substrates, indicating the great efficiency of these treatments for tribological applications.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1497 ◽  
Author(s):  
Isabel Santamaría Vicario ◽  
Lourdes Alameda Cuenca-Romero ◽  
Sara Gutiérrez González ◽  
Verónica Calderón Carpintero ◽  
Ángel Rodríguez Saiz

The properties and the behaviour of plaster mortars designed with Polyurethane Foam Waste (PFW) are studied in this investigation. A characterization of the mixtures is completed, in accordance with the technical specifications of European Norms. The incorporation of polyurethane waste foam can yield porous and lighter mortars, with better resistance to water-vapour permeability, although with weaker mechanical strength and higher levels of absorbency. Nevertheless, suitable mechanical strengths were achieved, resulting in a new material that is compliant with the requirements of the construction industry. The use of PFW in the the manufacture of gypsum mortars for construction reduces the consumption of natural resources and, at the same time, recovers an industrial waste that is otherwise difficult to recycle.


2021 ◽  
Vol 183 ◽  
pp. 109441 ◽  
Author(s):  
Wei-Hsuan Wang ◽  
Chieh-Wei Huang ◽  
Erh-Yeh Tsou ◽  
Wei-Sam Ao-Ieong ◽  
Hui-Ching Hsu ◽  
...  

1983 ◽  
Vol 27 ◽  
Author(s):  
R. Martinella ◽  
G. Chevallard ◽  
C. Tosello

ABSTRACTMechanically polished Ti6Al4V samples were implanted with 100 key nitrogen ions to a fluence of 5.1017 ions/cm2 at two different bulk tenneratures: 370°C and 470°C. Wear tests were carried out with a reciprocating slidina tribotester. Structural modifications and wear morphologies were studied by TEM and SEM. 370°C implanted sample showed the same wear behavior as unimplanted ones, while 470°C implanted sample showed better wear resistance because of a TiN hardened layer. Correlations- between microstructural modifications, wear behavior and mechanisms are reported: results agree with the delamination theory. Comparison with ion- and gas-nitrided samples are presented.


2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.


2015 ◽  
Vol 1095 ◽  
pp. 341-344 ◽  
Author(s):  
Can Hui Xu ◽  
Guang Liang Zhang ◽  
Xin Zhou ◽  
Xi Lin Xiao ◽  
Chang Ming Nie ◽  
...  

The characterization of phosphoproteins requires highly specific methods for the separation and enrichment of phosphopeptides. Here we report a novel metal ion-immobilized solid phase material for the separation and enrichment of phosphopeptides. The material is uranyl-salophen-silica gel (USSG) particles in which salophen is a tetradentate ligand of uranyl ion. In USSG salophen is connected on the surface of silica gel and uranyl is bound on the surface through its coordination with salophen. Phosphopeptides can be selectively retained by USSG because uranyl-salophen can bind phosphate moiety with strong affinity and high selectivity. The new material USSG has been successfully used for the separation of phosphopeptides from peptide mixtures with the separation efficiency of 97.0% to 97.4%.


Sign in / Sign up

Export Citation Format

Share Document