scholarly journals Improvement of the Tribological Characteristics of AISI 8620, 8640 and 52100 Steels through Thermo-Reactive Treatments

Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 63 ◽  
Author(s):  
Triani ◽  
Mariani ◽  
Gomes ◽  
Oliveira ◽  
Totten ◽  
...  

The production of vanadium and niobium carbides (VC and NbC) layers on AISI 8620, 8640, and 52100 steels may increase hardness and wear resistance of substrates. Thermochemical treatments were performed at 1000 °C for 2 and 4 h. The characterization of the treated samples was carried out by means of Knoop microhardness tests, “calotest” type microadhesive wear test, layer adhesion test according to VDI 3198 standard, and X-ray diffraction. Compact and uniform layers of VC and NbC were obtained in all treatments, with hardness up to 2500 HK and microadhesive wear resistance far superior to that of the substrates, indicating the great efficiency of these treatments for tribological applications.

2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.


Author(s):  
S.Y. Hwang ◽  
B.G. Seong ◽  
M.C. Kim

Abstract To maintain surface roughness of process rolls in cold rolling steel plants, WC-Co coatings have been known to be effective ones. In this study, a high pressure/high velocity oxygen fuel (HP/HVOF) process was used to obtain WC-Co coatings. To get the best quality of coatings, WC-Co coatings are sprayed with numerous powders made by various processes. These powders include agglomerated sintered powders, fused-crushed powders, extra high carbon WC-Co powders and (W2C, WC)-Co powders. After spraying, properties of coatings such as hardness, wear resistance. X-ray diffraction, and microstructures were analyzed. For coatings produced by agglomerated-sintered powders, hardness of the coating increased as power levels and the number of passes were increased. In case of the coatings produced by fused-crushed powders, a very low deposition rate was obtained due to a low flowablity of the powders. In addition, the WC-Co coatings sprayed with extra carbon content of WC-Co did not show improved hardness and wear resistance. Also, some decomposition of WC was observed in the coating. Finally, the coatings produced by (W2C, WC)-Co powders produced higher hardness and lower wear resistance coating.


Author(s):  
Deepak Mehra ◽  
M.M. Mahapatra ◽  
S. P. Harsha

The purpose of this article is to enhance the mechanical properties and wear resistance of the RZ5 alloy used in the aerospace application by adding TiC particles. The present study discusses processing of in-situ RZ5-TiC composite fabricated by self-propagating high temperature (S.H.S.) method and its wear behavior. The effects of TiC particle on mechanical and microstructural properties of the composite are studied. The wear test is performed by varying the sliding distance and applied load. The composite is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results exhibited the properties like strength and hardness of RZ5-10wt%TiC composite has been increased considerably, while grain size is decreased as compared to the RZ5 alloy. The fractography indicated mixed mode (quasi-cleavage and ductile feature) failure of the composites. The wear results showed improvement in wear resistance of the composite. The FESEM showed dominate wear mechanisms are abrasion, ploughing grooves.


2020 ◽  
Vol 5 (9) ◽  
pp. 1089-1096
Author(s):  
Omar Alvarez ◽  
Carlos Valdés ◽  
Arturo Barba ◽  
Rafael González ◽  
Raúl Valdéz ◽  
...  

It has been developed a thermochemical process that has been applied on copper alloys: brass and bronze, using pure zinc powder, obtaining a zinc-rich wear protective coating. The layers obtained by a diffusion process, on brass (alloy C36000) and bronze specimens (alloy SAE 62), were characterized using a scanning electron microscope, EDAX microanalysis, Vickers microhardness, X-Ray diffraction analysis, and sliding wear test. The chemical analysis showed a layer composition of 62 % Zn and 38 % Cu, on average. The microhardness for thermochemical treated brass was 496HV and 598HV for bronze; thus, a microhardness increase for brass is 468% and 532% for bronze. It was made an X-Ray diffraction analysis, confirming the results obtained with the chemical analysis and crystalline structure for coating. It showed the presence of Cu64Zn36 and Cu5Zn8 phases. The wear tests demonstrated that treated specimens show better wear resistance than non-protected specimens.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhu Weixin ◽  
Kong Dejun

Abstract NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coatings were analyzed using ultra-depth-of-field microscopy (UDFM) and X-ray diffraction (XRD), respectively. A ball-on-disk wear test was used to analyze the friction-wear performance of the substrate and the NiMo-TiC coatings under grease-lubrication condition. The results show that the grain shape of NiMo-TiC coatings is dendritic. The wear resistance of NiMo-TiC coatings is improved by the addition of TiC, and the depths of the worn tracks on the substrate and on the NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings are 4.183 μm, 2.164 μm, 1.882 μm, and 1.246 μm, respectively, and the corresponding wear rates are 72.25 μm3/s/N, 32.00 μm3/s/N, 18.10 μm3/s/N, and 7.99 μm3/s/N, respectively; this shows that the NiMo-25%TiC coating has the highest wear resistance among the three kinds of coatings. The wear mechanism of NiMo-TiC coatings is abrasive wear, and the addition of TiC plays a role in resisting wear during the friction process.


2019 ◽  
Author(s):  
Rafael Magalhães Triani ◽  
Lucas Fuscaldi De Assis Gomes ◽  
Luiz Carlos Casteletti ◽  
Amadeu Lombardi Neto ◽  
George Edward Totten

Abstract In this work, boriding and Thermo-reactive Deposition (TRD) treatments for the production of boride and both vanadium and niobium carbide layers were performed on the substrates of AISI 15B30 steel to evaluate properties such as hardness, adhesive wear resistance, surface adhesion and chemical compounds present in the layers. For this purpose, layers were characterized by optical microscope, Knoop microhardness, microadhesive wear test, Rockwell C indentation adhesion according to VDI 3198 and X-ray diffraction. The results showed layers with high hardness (1400 - 2500 HK), greater microadhesive wear resistance (up to 15 times higher) when compared to the substrate and excellent delamination resistance.


2007 ◽  
Vol 29-30 ◽  
pp. 91-94
Author(s):  
B.Y. Choi ◽  
J.K. Jeong ◽  
Y.B. Lim

Nitrogen implanted titanium alloys with enhanced wear resistance have been synthesized under the conditions of energy and N++N2 +ion dose in the range of 30keV to 120keV and 3×1017ions/cm2 to 1×1018ions/cm2, respectively. Auger electron spectroscopy and X-ray diffraction show that supersaturated titanium solid solution with the gradient nitrogen concentration and titanium nitride compounds are formed in the surface modified regions of the materials. Enhanced wear resistance of the nitrogen implanted titanium alloy at energy of 120keV and ion dose of 1×1018ions/cm2 has been showed and explained on the basis of observed microstructure including the formation of micropits on the wear track in the present study.


2010 ◽  
Vol 65 ◽  
pp. 16-20
Author(s):  
Elíria Maria de Jesus Agnolon Pallone ◽  
Vania Trombini ◽  
Kátia L. Silva ◽  
Luis O. Bernardi ◽  
Makoto Yokoyama ◽  
...  

One of the most recent alternatives in the development of materials with high mechanical properties and wear resistance is the addition of nanometric and/or micrometric particles of a secondary phase into ceramic matrices. Nanostructured materials can be defined as systems that have at least one microstructural characteristic of nanometric dimensions (less than 100nm). In this work, alumina-diamond nanocomposites were produced using nanometric diamond powder obtained by high energy milling in a SPEX mixer mill for 6h. The crystallite size was 30nm. After deagglomeration, the diamond powder was added to the alumina matrix in a ratio of 5wt%. The samples were isostatically pressed and high-vacuum sintered. The resulting nanocomposites and composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and by microhardness, diametral compression and wear resistance tests. The results confirmed the promising wear characteristics of the alumina-diamond nanocomposite.


2011 ◽  
Vol 228-229 ◽  
pp. 130-134
Author(s):  
Jian Hua Yang ◽  
Song Li

Ti ions were implanted into H21 steel to improve the surface structure of oxides in H21 steel. The wear characteristics of the implanted steel was measured and compared to the performance of the un-implanted steel by a line-cutting apparatus and an optical interference microscope. The Ti concentration depth profile of the implanted steel was measured by Rutherford backscattering spectroscopy (RBS). The structure and composition of oxides were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The results showed that the improved wear resistance of the implanted steel was mainly due to the structure and composition changes of the surface oxides after Ti ion implantation.


2011 ◽  
Vol 227 ◽  
pp. 23-26 ◽  
Author(s):  
Abimbola Patricia Popoola ◽  
Sisa Pityana ◽  
Enoch Ogunmuyiwa

Al/TiB2 metal matrix composite (MMCs) was fabricated on aluminium AA1200 with the aim of improving the wear resistance property of the substrate. The characterization of the MMCs was carried out by Optical Microscopy (OM), Scanning Electron Microscopy (SEM/EDS) and X-ray Diffraction (XRD). The microhardness and wear resistance tests were achieved. Results showed that the microhardness property of the AA1200 was increased by three times the original value and the wear resistance was also significantly improved.


Sign in / Sign up

Export Citation Format

Share Document