Heat Flux Determination From Ultrasonic Pulse Measurements

Author(s):  
M. R. Myers ◽  
D. G. Walker ◽  
D. E. Yuhas ◽  
M. J. Mutton

Ultrasonic time of flight measurements have been used to estimate the interior temperature of propulsion systems remotely. All that is needed is acoustic access to the boundary in question and a suitable model for the heat transfer along the path of the pulse train. The interior temperature is then deduced from a change in the time of flight and the temperature dependent velocity factor, which is obtained for various materials as a calibration step. Because the acoustic pulse samples the entire temperature distribution, inverse data reduction routines have been shown to provide stable and accurate estimates of the unknown temperature boundary. However, this technique is even more interesting when applied to unknown heat flux boundaries. Normally, the estimation of heat fluxes is even more susceptible to uncertainty in the measurement compared to temperature estimates. However, ultrasonic sensors can be treated as extremely high-speed calorimeters where the heat flux is directly proportional to the measured signal. Through some simple one-dimensional analyses, this work will show that heat flux is a more natural and stable quantity to estimate from ultrasonic time of flight. We have also introduced an approach for data reduction that makes use of a composite velocity factor, which is easier to measure.

Author(s):  
P. L. Schmidt ◽  
D. G. Walker ◽  
D. E. Yuhas ◽  
M. J. Mutton

The inversion of a composite governing equation for the estimation of a boundary heat flux from ultrasonic pulse data is presented. The time of flight of the ultrasonic pulse is temperature dependent and can be used to predict the boundary heat flux. Sensitivities of the approach are examined, results from fabricated data are presented, and example solutions are provided with actual ultrasonic temperature measurement data. The results indicate that compared to the canonical inverse heat conduction problem, the additional step of resolving the time-of-flight data to temperature degrades the sensitivities. Nevertheless, sampling the entire temperature distribution and enhances the results. This method of using ultrasonic pulses to remotely determine heat fluxes is comparable in terms of accuracy to more common heat flux estimation methods.


Author(s):  
Lakshya Bhatnagar ◽  
Guillermo Paniagua

Abstract This work aims to provide a technique with which high frequency heat flux measurement data can be acquired in systems with high operational temperatures and high-speed flows with quantifiable and accurate uncertainty estimates. This manuscript presents the detailed calibration and application of an atomic layer thermopile, for heat fluxes with a frequency bandwidth of 0 to 1MHz. Two calibration procedures with a detailed uncertainty analysis. The first procedure consists using a laser to deliver radiation heat flux, while the second consists of a convective heat blowdown experiment. The use of this probe is demonstrated in a high-speed environment at Mach 2. The sensor effectively captures the passage of the normal shock wave and the values are compared with those computed using surface temperature measurement. Finally, a numerical study is carried out to design a cooling system that will allow the sensor to survive in high temperature conditions of 1273K while the sensor film is maintained at 323K. A two-dimensional axisymmetric conjugate heat transfer analysis is carried out to obtain the desired geometry.


Author(s):  
W. Chen ◽  
R. Mills ◽  
R. S. Dwyer-Joyce

The load applied by each rolling element on a bearing raceway controls friction, wear and service life. It is possible to infer bearing load from load cells or strain gauges on the shaft or bearing housing. However, this is not always simply and uniquely related to the real load transmitted by rolling elements directly to the raceway. Firstly, the load sharing between rolling elements in the raceway is statically indeterminate, and secondly, in a machine with non-steady loading, the load path is complex and highly transient being subject to the dynamic behaviour of the transmission system. This study describes a method to measure the load transmitted directly by a rolling element to the raceway by using the time of flight (ToF) of a reflected ultrasonic pulse. A piezoelectric sensor was permanently bonded onto the bore surface of the inner raceway of a cylindrical roller bearing. The ToF of an ultrasonic pulse from the sensor to the roller–raceway contact was measured. This ToF depends on the speed of the wave and the thickness of the raceway. The speed of an ultrasonic wave changes with the state of the stress, known as the acoustoelastic effect. The thickness of the material varies when deflection occurs as the contacting surfaces are subjected to load. In addition, the contact stiffness changes the phase of the reflected signal and in simple peak-to-peak measurement, this appears as a change in the ToF. In this work, the Hilbert transform was used to remove this contact dependent phase shift. Experiments have been performed on both a model line contact and a single row cylindrical roller bearing from the planet gear of a wind turbine epicyclic gearbox. The change in ToF under different bearing loads was recorded and used to determine the deflection of the raceway. This was then related to the bearing load using a simple elastic contact model. Measured load from the ultrasonic reflection was compared with the applied bearing load with good agreement. The technique shows promise as an effective method for load monitoring in real-world bearing applications.


2006 ◽  
Vol 128 (12) ◽  
pp. 1302-1311 ◽  
Author(s):  
Camil-Daniel Ghiu ◽  
Yogendra K. Joshi

An experimental study of pool boiling using enhanced structures under top-confined conditions was conducted with a dielectric fluorocarbon liquid (PF 5060). The single layer enhanced structures studied were fabricated in copper and quartz, had an overall size of 10×10mm2, and were 1mm thick. The parameters investigated in this study were the heat flux (0.8-34W∕cm2) and the top space S(0-13mm). High-speed visualizations were performed to elucidate the liquid/vapor flow in the space above the structure. The enhancement observed for plain surfaces in the low heat fluxes regime is not present for the present enhanced structure. On the other hand, the maximum heat flux for a prescribed 85°C surface temperature limit increased with the increase of the top spacing, similar to the plain surfaces case. Two characteristic regimes of pool boiling have been identified and described: isolated flattened bubbles regime and coalesced bubbles regime.


2017 ◽  
Vol 14 (23) ◽  
pp. 5595-5606 ◽  
Author(s):  
Peter Berg ◽  
Michael L. Pace

Abstract. Exchange of gases, such as O2, CO2, and CH4, over the air–water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique – originally developed for benthic O2 flux measurements – right below the air–water interface (∼ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2–temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air–water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air–water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air–water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds – two main drivers of lotic gas exchange – but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature–density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air–water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air–water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.


Author(s):  
Saeil Jeon ◽  
Pratanu Roy ◽  
N. K. Anand ◽  
Debjyoti Banerjee

Flow boiling experiments were performed on copper, bare silicon and carbon nanotube (CNT) coated silicon wafer using water as the test fluid. Wall heat flux was measured by varying the wall superheat. The experiments were performed under pool boiling conditions (zero flow rate) as well as by varying the flow rates of water. The liquid sub-cooling was varied between 40 ∼ 60 °C. An infra–red camera was used to calibrate the surface temperature of the silicon wafers and the copper surface. Heat flux measurements were performed by using a calorimeter apparatus. High speed visualization experiments were performed to measure the bubble departure diameter, bubble departure frequency and bubble growth rate as a function of time. Heat flux values for all three surfaces were calculated from the temperature differences obtained by sheathed thermocouples inside the copper block in the calorimeter apparatus. Flow boiling curves were plotted to enumerate the enhancements in heat transfer. It was observed that MWCNT coated silicon surface enables higher heat fluxes compared to bare silicon surface. This enhancement can be ascribed to be due to the high thermal conductivity of the carbon nanotubes, micro-layer effect, enhancement of transient heat transfer due to periodic solid-liquid contact and increase in active nucleation sites on nanostructured surfaces.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Qingjun Cai ◽  
Ya-Chi Chen

Dryout in a heat pipe evaporator is caused by insufficient condensate supply through the wick structure. Dryout is generally considered a failure of the heat pipe operation. However, traditional dryout theory may not fully explain the heat and mass transport limitations in the biporous (biwick) wick structure due to new mass transfer mechanisms, such as liquid splash at high heat flux, and vapor bubble/jet occupation of liquid transport passages. This article investigates the dryout phenomenon in carbon nanotube (CNT) based biwick structure. The incipience and expansion of the dryout zone on the CNT biwick structure are visualized. Variation of the evaporator temperatures at various heat fluxes is measured to characterize the temperature responses on the biwick dryout. Results based on both visualization and measurement show that dryout of CNT biwick structures is affected by vapor flow induced droplet splash and vapor occupation of liquid transport passages, which reduces the liquid supply to the hottest region and creates a local dry zone. On the curves of heat flux versus the evaporator temperature, dryout can be defined as the appearance of the inflexion point during the heating period, and associated with the existence of a large temperature hysteresis in a heating and cooling cycle. Experimental measurement also shows that over 12% of the liquid by volume is lost without being phase changed, due to high-speed vapor flow induced liquid splash. Liquid splash and interactions between vapor and liquid flows also increase the pressure drop weight in the evaporator over the system loop and result in more notable heating area effect on biwick structures when compared with traditional monowick structures.


2019 ◽  
Vol 118 ◽  
pp. 01034
Author(s):  
Guoan Zhang ◽  
Lingling Wei ◽  
Junhao Gao ◽  
Tingting Qiu ◽  
Rongnan Yuan ◽  
...  

Polyvinyl chloride foam (PVC) is widely used as the wall materials of the high-speed train. The combustion characteristics of PVC foam under the heat fluxes of 20-60 kW/m2 are investigated by fire Propagation Apparatus (FPA). The results show that the ignition time of PVC foam decreases with the increase of heat flux. The peak of heat release rate, mass loss rate and smoke production rate increase with the increase of heat flux. Under the condition of 60 kW/m2, the heat release rate has the peak value of 109.10 kW/m2. The research on the combustion characteristics of the PVC can be used to analyse the fire risk of the train and guide the formulation of safety measures.


2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Tat Thang Nguyen ◽  
Hiroshige Kikura ◽  
Ngoc Hai Duong ◽  
Hideki Murakawa ◽  
Nobuyoshi Tsuzuki

Ultrasonic Velocity Profile (UVP) method for measurement of single-phase and two-phase flow in a vertical pipe has recently been developed in the Laboratory for industrial and Environmental Fluid Dynamics, Institute of Mechanics, VAST. The signal processings of the UVP method include the ultrasonic pulse Doppler method (UDM)and the ultrasonic time-domain cross-correlation (UTDC) method. For two-phase flow, simultaneous measurements of both liquid and gas are enabled by using a multi-wave ultrasonic transducer (multi-wave TDX). The multi-wave TDX is able to emit and receive ultrasound of two different center frequencies of 2 MHz and 8 MHz at the same time and position. 2 MHz frequency with beam diameter 10 mm is exploited for measurement of gas. 8 MHz one with beam diameter 3 mm is used for liquid. Measurements have been carried out for laminar and turbulent single-phase flows and bubbly counter-current two-phase flows in two flow loops using two vertical pipes of 26 mm inner diameter (I.D.) and 50 mm I.D. respectively. Based on the measured results, assessment of each method is clarified. Applicability of each method for different conditions of pipe flow has been tested. Suggestions for application of the two methods have been recommended.


Sign in / Sign up

Export Citation Format

Share Document